ﻻ يوجد ملخص باللغة العربية
We introduce a learning-based framework to optimize tensor programs for deep learning workloads. Efficient implementations of tensor operators, such as matrix multiplication and high dimensional convolution, are key enablers of effective deep learning systems. However, existing systems rely on manually optimized libraries such as cuDNN where only a narrow range of server class GPUs are well-supported. The reliance on hardware-specific operator libraries limits the applicability of high-level graph optimizations and incurs significant engineering costs when deploying to new hardware targets. We use learning to remove this engineering burden. We learn domain-specific statistical cost models to guide the search of tensor operator implementations over billions of possible program variants. We further accelerate the search by effective model transfer across workloads. Experimental results show that our framework delivers performance competitive with state-of-the-art hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPU.
We introduce a novel end-to-end approach for learning to cluster in the absence of labeled examples. Our clustering objective is based on optimizing normalized cuts, a criterion which measures both intra-cluster similarity as well as inter-cluster di
Bin Packing problems have been widely studied because of their broad applications in different domains. Known as a set of NP-hard problems, they have different vari- ations and many heuristics have been proposed for obtaining approximate solutions. S
Autonomous agents can learn by imitating teacher demonstrations of the intended behavior. Hierarchical control policies are ubiquitously useful for such learning, having the potential to break down structured tasks into simpler sub-tasks, thereby imp
We study the problem of directly optimizing arbitrary non-differentiable task evaluation metrics such as misclassification rate and recall. Our method, named MetricOpt, operates in a black-box setting where the computational details of the target met
We compare the discretize-optimize (Disc-Opt) and optimize-discretize (Opt-Disc) approaches for time-series regression and continuous normalizing flows (CNFs) using neural ODEs. Neural ODEs are ordinary differential equations (ODEs) with neural netwo