ﻻ يوجد ملخص باللغة العربية
We study high-dimensional estimators with the trimmed $ell_1$ penalty, which leaves the $h$ largest parameter entries penalty-free. While optimization techniques for this nonconvex penalty have been studied, the statistical properties have not yet been analyzed. We present the first statistical analyses for $M$-estimation and characterize support recovery, $ell_infty$ and $ell_2$ error of the trimmed $ell_1$ estimates as a function of the trimming parameter $h$. Our results show different regimes based on how $h$ compares to the true support size. Our second contribution is a new algorithm for the trimmed regularization problem, which has the same theoretical convergence rate as the difference of convex (DC) algorithms, but in practice is faster and finds lower objective values. Empirical evaluation of $ell_1$ trimming for sparse linear regression and graphical model estimation indicate that trimmed $ell_1$ can outperform vanilla $ell_1$ and non-convex alternatives. Our last contribution is to show that the trimmed penalty is beneficial beyond $M$-estimation, and yields promising results for two deep learning tasks: input structures recovery and network sparsification.
We present a new approach to solve the sparse approximation or best subset selection problem, namely find a $k$-sparse vector ${bf x}inmathbb{R}^d$ that minimizes the $ell_2$ residual $lVert A{bf x}-{bf y} rVert_2$. We consider a regularized approach
This paper aims to build an estimate of an unknown density of the data with measurement error as a linear combination of functions from a dictionary. Inspired by the penalization approach, we propose the weighted Elastic-net penalized minimal $ell_2$
In this paper, we propose a new estimation methodology based on a projected non-linear conjugate gradient (PNCG) algorithm with an efficient line search technique. We develop a general PNCG algorithm for a survival model incorporating a proportion cu
Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is repres
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class