ﻻ يوجد ملخص باللغة العربية
Words are polysemous and multi-faceted, with many shades of meanings. We suggest that sparse distributed representations are more suitable than other, commonly used, (dense) representations to express these multiple facets, and present Category Builder, a working system that, as we show, makes use of sparse representations to support multi-faceted lexical representations. We argue that the set expansion task is well suited to study these meaning distinctions since a word may belong to multiple sets with a different reason for membership in each. We therefore exhibit the performance of Category Builder on this task, while showing that our representation captures at the same time analogy problems such as the Ganga of Egypt or the Voldemort of Tolkien. Category Builder is shown to be a more expressive lexical representation and to outperform dense representations such as Word2Vec in some analogy classes despite being shown only two of the three input terms.
Task specific fine-tuning of a pre-trained neural language model using a custom softmax output layer is the de facto approach of late when dealing with document classification problems. This technique is not adequate when labeled examples are not ava
Although the self-supervised pre-training of transformer models has resulted in the revolutionizing of natural language processing (NLP) applications and the achievement of state-of-the-art results with regard to various benchmarks, this process is s
Recently, there has been a strong interest in developing natural language applications that live on personal devices such as mobile phones, watches and IoT with the objective to preserve user privacy and have low memory. Advances in Locality-Sensitiv
In this paper we explain how we deal with the problems related to the constitution of the Aliento database, the complexity of which has to do with the type of phrases we work with, the differences between languages, the type of information we want to
We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is signi