ﻻ يوجد ملخص باللغة العربية
To reduce material and processing costs of commercial permanent magnets and to attempt to fill the empty niche of energy products, 10 - 20 MGOe, between low-flux (ferrites, alnico) and high-flux (Nd2Fe14B- and SmCo5-type) magnets, we report synthesis, structure, magnetic properties and modeling of Ta, Cu and Fe substituted CeCo5. Using a self-flux technique, we grew single crystals of I - Ce15.1Ta1.0Co74.4Cu9.5, II - Ce16.3Ta0.6Co68.9Cu14.2, III - Ce15.7Ta0.6Co67.8Cu15.9, IV - Ce16.3Ta0.3Co61.7Cu21.7 and V - Ce14.3Ta1.0Co62.0Fe12.3Cu10.4. X-ray diffraction analysis (XRD) showed that these materials retain a CaCu5 substructure and incorporate small amounts of Ta in the form of dumb-bells, filling the 2e crystallographic sites within the 1D hexagonal channel with the 1a Ce site, whereas Co, Cu and Fe are statistically distributed among the 2c and 3g crystallographic sites. Scanning electron microscopy, energy dispersive X-ray spectroscopy (SEM-EDS) and scanning transmission electron microscopy (STEM) examinations provided strong evidence of the single-phase nature of the as-grown crystals, even though they readily exhibited significant magnetic coercivitie of ~1.6 - ~1.8 kOe caused by Co-enriched, nano-sized, structural defects and faults that can serve as pinning sites. Formation of the composite crystal during the heat treatment creates a 3D array of extended defects within a primarily single grain single crystal, which greatly improves its magnetic characteristics. Possible causes of the formation of the composite crystal may be associated with Ta atoms leaving matrix interstices at lower temperatures and/or matrix degradation induced by decreased miscibility at lower temperatures. Fe strongly improves both the Curie temperature and magnetization of the system resulting in (BH)max:~13 MGOe at room temperature.
This paper describes the open Novamag database that has been developed for the design of novel Rare-Earth free/lean permanent magnets. The database software technologies, its friendly graphical user interface, advanced search tools and available data
Low-temperature MnBi (hexagonal NiAs phase) exhibits anomalies in the lattice constants (a, c) and bulk elastic modulus (B) below 100 K, spin reorientation and magnetic susceptibility maximum near 90 K, and, importantly for high-temperature magnetic
We investigate analytically the anisotropic dielectric properties of single crystal {alpha}-SnS near the fundamental absorption edge by considering atomic orbitals. Most striking is the excitonic feature in the armchair- (b-) axis direction, which is
Co4Nb2O9 (CNO) having {alpha}-Al2O3 crystal structure with Co chains along c-direction shows gigantic magnetoelelctric coupling below antiferromagnetic ordering temperature of 27 K but above a spin flop field of 1.6 T. We have investigated structural
The giant spin Hall effect in magnetic heterostructures along with low spin memory loss and high interfacial spin mixing conductance are prerequisites to realize energy efficient spin torque based logic devices. We report giant spin Hall angle (SHA)