ﻻ يوجد ملخص باللغة العربية
Rapid preparation, manipulation, and correction of spin states with high fidelity are requisite for quantum information processing and quantum computing. In this paper, we propose a fast and robust approach for controlling two spins with Heisenberg and Ising interactions. By using the concept of shortcuts to adiabaticity, we first inverse design the driving magnetic fields for achieving fast spin flip or generating the entangled Bell state, and further optimize them with respect to the error and fluctuation. In particular, the designed shortcut protocols can efficiently suppress the unwanted transition or control error induced by anisotropic antisymmetric Dzyaloshinskii-Moriya exchange. Several examples and comparisons are illustrated, showing the advantages of our methods. Finally, we emphasize that the results can be naturally extended to multiple interacting spins and other quantum systems in an analogous fashion.
We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The
We demonstrate coherent control of two nuclear spins mediated by the magnetic resonance of a hyperfine-coupled electron spin. This control is used to create a double nuclear coherence in one of the two electron spin manifolds, starting from an initia
Adiabatic quantum control is a very important approach for quantum physics and quantum information processing. It holds the advantage with robustness to experimental imperfections but accumulates more decoherence due to the long evolution time. Here,
In NMR (Nuclear Magnetic Resonance) quantum computation, the selective control of multiple homonuclear spins is usually slow because their resonance frequencies are very close to each other. To quickly implement controls against decoherence effects,
We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped ion hyperfine qubits. The protocol consists of sequences of $pi$-pulses acting on ions that are o