ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Second Harmonic Generation in Doubly Resonant Aluminum Nitride Microrings to Address Rubidium Two-Photon Clock Transition

145   0   0.0 ( 0 )
 نشر من قبل Joshua Surya
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear optical effects have been studied extensively in microresonators as more photonics applications transition to integrated on-chip platforms. Due to low optical losses and small mode volumes, microresonators are demonstrably the state-of-the-art platform for second harmonic generation (SHG). However, the working bandwidth of such microresonator-based devices are relatively small, presenting a challenge for applications where a specifically targeted wavelength needs to be addressed. In this work, we analyzed the phase-matching window and resonance wavelength with respect to varying microring width, radius and temperature. A chip with precise design parameters was fabricated with phase-matching realized at the exact wavelength of two-photon transition of 85-Rubidium. This procedure can be generalized to any target pump wavelength in the telecom-band with picometer precision.



قيم البحث

اقرأ أيضاً

We theoretically study the generation of optical frequency combs and corresponding pulse trains in doubly resonant intracavity second-harmonic generation (SHG). We find that, despite the large temporal walk-off characteristic of realistic cavity syst ems, the nonlinear dynamics can be accurately and efficiently modelled using a pair of coupled mean-field equations. Through rigorous stability analysis of the systems steady-state continuous wave solutions, we demonstrate that walk-off can give rise to a new, previously unexplored regime of temporal modulation instability (MI). Numerical simulations performed in this regime reveal rich dynamical behaviours, including the emergence of temporal patterns that correspond to coherent optical frequency combs. We also demonstrate that the two coupled equations that govern the doubly resonant cavity behaviour can, under typical conditions, be reduced to a single mean-field equation akin to that describing the dynamics of singly resonant cavity SHG [F. Leo et al., Phys. Rev. Lett. 116, 033901 (2016)]. This reduced approach allows us to derive a simple expression for the MI gain, thus permitting to acquire significant insight into the underlying physics. We anticipate that our work will have wide impact on the study of frequency combs in emerging doubly resonant cavity SHG platforms, including quadratically nonlinear microresonators.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume a nd doubly resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly resonant nanocavities with low mode volume and large quality factor by localized defects in a photonic crystal structure. We build on this approach by applying an evolutionary optimisation algorithm in connection with Maxwell equations solvers, showing that the proposed design recipe can be applied to any material platform. We explicitly calculate the second-harmonic generation efficiency for doubly resonant photonic crystal cavity designs in typical III-V semiconductor materials, such as GaN and AlGaAs, targeting a fundamental harmonic at telecom wavelengths, and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realisation of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integr ated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this Letter, we demonstrate an optimized fabrication of dually-resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17,000%/W is obtained in the low power regime and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.
125 - Jun Wang 2020
Second harmonic generation in nonlinear materials can be greatly enhanced by realizing doubly-resonant cavities with high quality factors. However, fulfilling such doubly resonant condition in photonic crystal (PhC) cavities is a long-standing challe nge, because of the difficulty in engineering photonic bandgaps around both frequencies. Here, by implementing a second-harmonic bound state in the continuum (BIC) and confining it with a heterostructure design, we show the first doubly-resonant PhC slab cavity with $2.4times10^{-2}$ W$^{-1}$ conversion efficiency under continuous wave excitation. We also report the confirmation of highly normal-direction concentrated far-field emission pattern with radial polarization at the second harmonic frequency. These results represent a solid verification of previous theoretical predictions and a cornerstone achievement, not only for nonlinear frequency conversion but also for vortex beam generation and prospective nonclassical sources of radiation.
We report second-harmonic generation (SHG) from thick hexagonal boron nitride (hBN) flakes with approximately 109-111 layers. The resulting effective second-order susceptibility is similar to previously reported few-layer experiments. This confirms t hat thick hBN flakes can serve as a platform for nonlinear optics, which is useful because thick flakes are easy to exfoliate while retaining a large flake size. We also show spatial second-harmonic maps revealing that SHG remains a useful tool for the characterization of the layer structure even in the case of a large number of layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا