ﻻ يوجد ملخص باللغة العربية
We report second-harmonic generation (SHG) from thick hexagonal boron nitride (hBN) flakes with approximately 109-111 layers. The resulting effective second-order susceptibility is similar to previously reported few-layer experiments. This confirms that thick hBN flakes can serve as a platform for nonlinear optics, which is useful because thick flakes are easy to exfoliate while retaining a large flake size. We also show spatial second-harmonic maps revealing that SHG remains a useful tool for the characterization of the layer structure even in the case of a large number of layers.
Noble metals with well-defined crystallographic orientation constitute an appealing class of materials for controlling light-matter interactions on the nanoscale. Nonlinear optical processes, being particularly sensitive to anisotropy, are a natural
Hexagonal boron nitride (hBN) is an emerging layered material that plays a key role in a variety of two-dimensional devices, and has potential applications in nanophotonics and nanomechanics. Here, we demonstrate the first cavity optomechanical syste
The non-linear response of dielectrics to intense, ultrashort electric fields has been a sustained topic of interest for decades with one of its most important applications being femtosecond laser micro/nano-machining. More recently, renewed interest
Hexagonal boron nitride (hBN) is a layered dielectric material with a wide range of applications in optics and photonics. In this work, we demonstrate a fabrication method for few-layer hBN flakes with areas up to 5000 $rm mu m$. We show that hBN in
Hexagonal boron nitride (hBN)-long-known as a thermally stable ceramic-is now available as atomically smooth, single-crystalline flakes, revolutionizing its use in optoelectronics. For nanophotonics, these flakes offer strong nonlinearities, hyperbol