ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous doping of a cuprate surface: new insights from in-situ ARPES

77   0   0.0 ( 0 )
 نشر من قبل Yigui Zhong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cuprate superconductors distinguish themselves from the conventional superconductors in that a small variation in the carrier doping can significantly change the superconducting transition temperature (T_c), giving rise to a superconducting dome where a pseudogap (ref. 1,2) emerges in the underdoped region and a Fermi liquid appears in the overdoped region. Thus a systematic study of the properties over a wide doping range is critical for understanding the superconducting mechanism. Here, we report a new technique to continuously dope the surface of Bi2Sr2CaCu2O8+x through an ozone/vacuum annealing method. Using in-situ ARPES, we obtain precise quantities of energy gaps and the coherent spectral weight over a wide range of doping. We discover that the d-wave component of the quasiparticle gap is linearly proportional to the Nernst temperature that is the onset of superconducting vortices (ref. 3), strongly suggesting that the emergence of superconducting pairing is concomitant with the onset of free vortices, with direct implications for the onset of superconducting phase coherence at T_c and the nature of the pseudogap phenomena.



قيم البحث

اقرأ أيضاً

We study the systematic doping evolution of nodal dispersions by in-situ angle-resolved photoemission spectroscopy on the continuously doped surface of a high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$. We reveal that the nodal dispersi on has three segments separated by two kinks, located at ~10 meV and roughly 70 meV, respectively. The three segments have different band velocities and different doping dependence. In particular, the velocity of the high-energy segment increases monotonically as the doping level decreases and can even surpass the bare band velocity. We propose that electron fractionalization is a possible cause for this anomalous nodal dispersion and may even play a key role in the understanding of exotic properties of cuprates.
The discovery of quantum oscillations in the normal-state electrical resistivity of YBa2Cu3O6.5 provides the first evidence for the existence of Fermi surface (FS) pockets in an underdoped cuprate. However, the pockets electron vs. hole character, an d the very interpretation in terms of closed FS contours, are the subject of considerable debate. Angle-resolved photoemission spectroscopy (ARPES), with its ability to probe electronic dispersion as well as the FS, is ideally suited to address this issue. Unfortunately, the ARPES study of YBa2C3O7-d (YBCO) has been hampered by the techniques surface sensitivity. Here we show that this stems from the polarity and corresponding self-doping of the YBCO surface. By in-situ deposition of potassium atoms on the cleaved surface, we are able to continuously tune the doping of a single sample from the heavily overdoped to the underdoped regime. This reveals the progressive collapse of the normal-metal-like FS into four disconnected nodal FS arcs, or perhaps into hole but not electron pockets, in underdoped YBCO6.5.
150 - P. Zhang , P. Richard , N. Xu 2014
We used emph{in-situ} potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tu ne the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe$_{2-x}$Se$_2$ compound.
Starting from a spin-fermion model for the cuprate superconductors, we obtain an effective interaction for the charge carriers by integrating out the spin degrees of freedom. Our model predicts a quantum critical point for the superconducting interac tion coupling, which sets up a threshold for the onset of superconductivity in the system. We show that the physical value of this coupling is below this threshold, thus explaining why there is no superconducting phase for the undoped system. Then, by including doping, we find a dome-shaped dependence of the critical temperature as charge carriers are added to the system, in agreement with the experimental phase diagram. The superconducting critical temperature is calculated without adjusting any free parameter and yields, at optimal doping $ T_c sim $ 45 K, which is comparable to the experimental data.
154 - Yang He , Yi Yin , M. Zech 2013
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here we employ magnetic-field-dependent scanning tunneling micro scopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole doping (p) dependence of the quasiparticle interference pattern within a single Bi-based cuprate family, we observe a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting Tc. Surprisingly, this major reorganization of the systems underlying electronic structure has no effect on the smoothly evolving pseudogap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا