ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling the self-doping of YBa2C3O7-d polar surfaces: From Fermi surface to nodal Fermi arcs by ARPES

224   0   0.0 ( 0 )
 نشر من قبل Andrea Damascelli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of quantum oscillations in the normal-state electrical resistivity of YBa2Cu3O6.5 provides the first evidence for the existence of Fermi surface (FS) pockets in an underdoped cuprate. However, the pockets electron vs. hole character, and the very interpretation in terms of closed FS contours, are the subject of considerable debate. Angle-resolved photoemission spectroscopy (ARPES), with its ability to probe electronic dispersion as well as the FS, is ideally suited to address this issue. Unfortunately, the ARPES study of YBa2C3O7-d (YBCO) has been hampered by the techniques surface sensitivity. Here we show that this stems from the polarity and corresponding self-doping of the YBCO surface. By in-situ deposition of potassium atoms on the cleaved surface, we are able to continuously tune the doping of a single sample from the heavily overdoped to the underdoped regime. This reveals the progressive collapse of the normal-metal-like FS into four disconnected nodal FS arcs, or perhaps into hole but not electron pockets, in underdoped YBCO6.5.



قيم البحث

اقرأ أيضاً

The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal dispersion of Bi2Sr2CaCu2O8+d (Bi-2212), which demonstrates the ubiquity and robustness of this kink in underdoped Bi-2212. The renormalization of the nodal velocity due to this kink becomes stronger with underdoping, revealing that the nodal Fermi velocity is non-universal, in contrast to assumed phenomenology. This is used together with laser-ARPES measurements of the gap velocity, v2, to resolve discrepancies with thermal conductivity measurements.
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Al though a superconducting gap with d_x^2-y^2 symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.
We study the systematic doping evolution of nodal dispersions by in-situ angle-resolved photoemission spectroscopy on the continuously doped surface of a high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$. We reveal that the nodal dispersi on has three segments separated by two kinks, located at ~10 meV and roughly 70 meV, respectively. The three segments have different band velocities and different doping dependence. In particular, the velocity of the high-energy segment increases monotonically as the doping level decreases and can even surpass the bare band velocity. We propose that electron fractionalization is a possible cause for this anomalous nodal dispersion and may even play a key role in the understanding of exotic properties of cuprates.
76 - Y. G. Zhong , J. Y. Guan , X. Shi 2018
The cuprate superconductors distinguish themselves from the conventional superconductors in that a small variation in the carrier doping can significantly change the superconducting transition temperature (T_c), giving rise to a superconducting dome where a pseudogap (ref. 1,2) emerges in the underdoped region and a Fermi liquid appears in the overdoped region. Thus a systematic study of the properties over a wide doping range is critical for understanding the superconducting mechanism. Here, we report a new technique to continuously dope the surface of Bi2Sr2CaCu2O8+x through an ozone/vacuum annealing method. Using in-situ ARPES, we obtain precise quantities of energy gaps and the coherent spectral weight over a wide range of doping. We discover that the d-wave component of the quasiparticle gap is linearly proportional to the Nernst temperature that is the onset of superconducting vortices (ref. 3), strongly suggesting that the emergence of superconducting pairing is concomitant with the onset of free vortices, with direct implications for the onset of superconducting phase coherence at T_c and the nature of the pseudogap phenomena.
We present a comprehensive study performed with high-resolution angle-resolved photoemission spectroscopy on triple-layered Bi2Sr2Ca2Cu3O10+d single crystals. By measurements above TC the Fermi surface topology defined by the Fermi level crossings of the CuO2-derived band was determined. A hole-like Fermi surface as for single and double-CuO2 layered Bi-based cuprates is found, giving new input to the current debate of the general Fermi surface topology of the high Tc superconductors. Furthermore, we present measurements of the superconducting gap of Bi-2223 and show that there are clear indications for a strong anisotropy of the superconducting gap. The universal properties of this phase in comparison to the other Bi-based cuprates will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا