ﻻ يوجد ملخص باللغة العربية
We have performed density functional theory calculations of graphene decorated with carbon adatoms, which bind at the bridge site of a C--C bond. Earlier studies have shown that the C adatoms have magnetic moments and have suggested the possibility of ferromagnetism with high Curie temperature. Here we propose to use a gate voltage to fine tune the magnetic moments from zero to 1$mu_B$ while changing the magnetic coupling from antiferromagnetism to ferromagnetism and again to antiferromagnetism. These results are rationalized within the Stoner and RKKY models. When the SCAN meta-GGA correction is used, the magnetic moments for zero gate voltage are reduced and the Stoner band ferromagnetism is slightly weakened in the ferromagnetic region.
Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchan
We investigate the optical response of graphene nanoribbons (GNRs) using the broadband nonlinear generation and detection capabilities of nanoscale junctions created at the LaAlO$_3$/SrTiO$_3$ interface. GNR nanoclusters measured to be as small as 1-
We report an efficient technique to induce gate-tunable two-dimensional superlattices in graphene by the combined action of a back gate and a few-layer graphene patterned bottom gate complementary to existing methods. The patterned gates in our appro
We study the magnetic properties of graphene edges and graphene/graphane interfaces under the influence of electrostatic gates. For this, an effective low-energy theory for the edge states, which is derived from the Hubbard model of the honeycomb lat
We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additio