ﻻ يوجد ملخص باللغة العربية
The chemical and magnetic structures of the series of compounds Ca$_{2-x}$La$_x$RuO$_4$ [$x = 0$, $0.05(1)$, $0.07(1)$, $0.12(1)$] have been investigated using neutron diffraction and resonant elastic x-ray scattering. Upon La doping, the low temperature S-Pbca space group of the parent compound is retained in all insulating samples [$xleq0.07(1)$], but with significant changes to the atomic positions within the unit cell. These changes can be characterised in terms of the local RuO$_6$ octahedral coordination: with increasing doping the structure, crudely speaking, evolves from an orthorhombic unit cell with compressed octahedra to a quasi-tetragonal unit cell with elongated ones. The magnetic structure on the other hand, is found to be robust, with the basic $k=(0,0,0)$, $b$-axis antiferromagnetic order of the parent compound preserved below the critical La doping concentration of $xapprox0.11$. The only effects of La doping on the magnetic structure are to suppress the A-centred mode, favouring the B mode instead, and to reduce the N{e}el temperature somewhat. Our results are discussed with reference to previous experimental reports on the effects of cation substitution on the $d^4$ Mott insulator Ca$_2$RuO$_4$, as well as with regard to theoretical studies on the evolution of its electronic and magnetic structure. In particular, our results rule out the presence of a proposed ferromagnetic phase, and suggest that the structural effects associated with La substitution play an important role in the physics of the system.
The ground-state orbital occupancy of the Ru$^{4+}$ ion in Ca$_{2-x}$La$_x$RuO$_4$ [x=0, 0.05(1), 0.07(1) and 0.12(1)] was investigated by performing X-ray absorption spectroscopy (XAS) in the vicinity of the O K edge as a function of angle between t
A paradigmatic case of multi-band Mott physics including spin-orbit and Hunds coupling is realised in Ca$_2$RuO$_4$. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy ele
We present nonlinear conduction phenomena in the Mott insulator Ca2RuO4 investigated with a proper evaluation of self-heating effects. By utilizing a non-contact infrared thermometer, the sample temperature was accurately determined even in the prese
We show that the pressure-temperature phase diagram of the Mott insulator Ca$_{2}$RuO$_{4}$ features a metal-insulator transition at 0.5GPa: at 300K from paramagnetic insulator to paramagnetic quasi-two-dimensional metal; at $T leq$ 12K from antiferr
Insulator-to-metal transition in Ca$_{2}$RuO$_{4}$ has drawn keen attention because of its sensitivity to various stimulation and its potential controllability. Here, we report a direct observation of Fermi surface, which emerges upon introducing exc