ترغب بنشر مسار تعليمي؟ اضغط هنا

From Mott insulator to ferromagnetic metal: a pressure study of Ca$_{2}$RuO$_{4}$

270   0   0.0 ( 0 )
 نشر من قبل Fumihiko Nakamura
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the pressure-temperature phase diagram of the Mott insulator Ca$_{2}$RuO$_{4}$ features a metal-insulator transition at 0.5GPa: at 300K from paramagnetic insulator to paramagnetic quasi-two-dimensional metal; at $T leq$ 12K from antiferromagnetic insulator to ferromagnetic, highly anisotropic, three-dimensional metal. % We compare the metallic state to that of the structurally related p-wave superconductor Sr$_{2}$RuO$_{4}$, and discuss the importance of structural distortions, which are expected to couple strongly to pressure.



قيم البحث

اقرأ أيضاً

Insulator-to-metal transition in Ca$_{2}$RuO$_{4}$ has drawn keen attention because of its sensitivity to various stimulation and its potential controllability. Here, we report a direct observation of Fermi surface, which emerges upon introducing exc ess oxygen into an insulating Ca$_{2}$RuO$_{4}$, by using angle-resolved photoemission spectroscopy. Comparison between energy distribution curves shows that the Mott insulating gap is closed by eV-scale spectral-weight transfer with excess oxygen. Momentum-space mapping exhibits two square-shaped sheets of the Fermi surface. One is a hole-like $alpha$ sheet around the corner of a tetragonal Brillouin zone, and the other is an electron-like $beta$ sheet around the $Gamma$ point. The electron occupancies of the $alpha$ and $beta$ bands are determined to be $n_{alpha}=1.6$ and $n_{beta}=0.6$, respectively. Our result indicates that the insulator-to-metal transition occurs selectively in $d_{xz}$ and $d_{yz}$ bands and not yet in $d_{xy}$ band. This orbital selectivity is most likely explained in terms of the energy level of $d_{xy}$, which is deeper for Ca$_{2}$RuO$_{4+delta}$ than for Ca$_{1.8}$Sr$_{0.2}$RuO$_{4}$. Consequently, we found substantial differences from the Fermi surface of other ruthenates, shedding light on a unique role of excess oxygen among the metallization methods of Ca$_{2}$RuO$_{4}$.
We present angle resolved photoemission (ARPES) data on Na-doped Ca$_2$CuO$_2$Cl$_2$. We demonstrate that the chemical potential shifts upon doping the system across the insulator to metal transition. The resulting low energy spectra reveal a gap str ucture which appears to deviate from the canonical $d_{x2-y2} ~ |cos(k_x a)-cos(k_y a)|$ form. To reconcile the measured gap structure with d-wave superconductivity one can understand the data in terms of two gaps, a very small one contributing to the nodal region and a very large one dominating the anti-nodal region. The latter is a result of the electronic structure observed in the undoped antiferromagnetic insulator. Furthermore, the low energy electronic structure of the metallic sample contains a two component structure in the nodal direction, and a change in velocity of the dispersion in the nodal direction at roughly 50 meV. We discuss these results in connection with photoemission data on other cuprate systems.
A framework is presented for modeling and understanding magnetic excitations in localized, intermediate coupling magnets where the interplay between spin-orbit coupling, magnetic exchange, and crystal field effects are known to create a complex lands cape of unconventional magnetic behaviors and ground states. A spin-orbit exciton approach for modeling these excitations is developed based upon a Hamiltonian which explicitly incorporates single-ion crystalline electric field and spin exchange terms. This framework is then leveraged to understand a canonical Van Vleck $jrm{_{eff}}=0$ singlet ground state whose excitations are coupled spin and crystalline electric field levels. Specifically, the anomalous Higgs mode [Jain et al. Nat. Phys. 13, 633 (2017)], spin-waves [S. Kunkem{o}ller et al. Phys. Rev. Lett. 115, 247201 (2015)], and orbital excitations [L. Das et al. Phys. Rev. X 8, 011048 (2018)] in the multiorbital Mott insulator Ca$_2$RuO$_4$ are captured and good agreement is found with previous neutron and inelastic x-ray spectroscopic measurements. Furthermore, our results illustrate how a crystalline electric field-induced singlet ground state can support coherent longitudinal, or amplitude excitations, and transverse wavelike dynamics. We use this description to discuss mechanisms for accessing a nearby critical point.
166 - S. Ricc`o , M. Kim , A. Tamai 2018
We report the evolution of the $k$-space electronic structure of lightly doped bulk Ca$_{2}$RuO$_{4}$ with uniaxial strain. Using ultrathin plate-like crystals, we achieve strain levels up to $-4.1%$, sufficient to suppress the Mott phase and access the previously unexplored metallic state at low temperature. Angle-resolved photoemission experiments performed while tuning the uniaxial strain reveal that metallicity emerges from a marked redistribution of charge within the Ru $t_{2g}$ shell, accompanied by a sudden collapse of the spectral weight in the lower Hubbard band and the emergence of a well defined Fermi surface which is devoid of pseudogaps. Our results highlight the profound roles of lattice energetics and of the multiorbital nature of Ca$_{2}$RuO$_{4}$ in this archetypal Mott transition and open new perspectives for spectroscopic measurements.
We report a systematic study of electron doping of Sr2RuO4 by non-isovalent substitution of La^(3+) for Sr^(2+). Using a combination of de Haas-van Alphen oscillations, specific heat, and resistivity measurements, we show that electron doping leads t o a rigid-band shift of the Fermi level corresponding to one doped electron per La ion, with constant many-body quasiparticle mass enhancement over the band mass. The susceptibility spectrum is substantially altered and enhanced by the doping but this has surprisingly little effect on the strength of the unconventional superconducting pairing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا