ترغب بنشر مسار تعليمي؟ اضغط هنا

A lower occurrence rate of bright X-ray flares in SN-GRBs than $z<1$ GRBs: evidence of energy partitions?

162   0   0.0 ( 0 )
 نشر من قبل Wei-Min Gu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The occurrence rates of bright X-ray flares in z<1 gamma-ray bursts (GRBs) with or without observed supernovae (SNe) association were compared. Our Sample I: the z<1 long GRBs (LGRBs) with SNe association (SN-GRBs) and with early Swift/X-Ray Telescope (XRT) observations, consists of 18 GRBs, among which only two GRBs have bright X-ray flares. Our Sample II: for comparison, all the z<1 LGRBs without observed SNe association and with early Swift/XRT observations, consists of 45 GRBs, among which 16 GRBs present bright X-ray flares. Thus, the study indicates a lower occurrence rate of bright X-ray flares in Sample I (11.1%) than in Sample II (35.6%). In addition, if dim X-ray fluctuations are included as flares, then 16.7% of Sample I and 55.6% of Sample II are found to have flares, again showing the discrepancy between these two samples. We examined the physical origin of these bright X-ray flares and found that most of them are probably related to the central engine reactivity. To understand the discrepancy, we propose that such a lower occurrence rate of flares in the SN-GRB sample may hint at an energy partition among the GRB, SNe, and X-ray flares under a saturated energy budget of massive star explosion.



قيم البحث

اقرأ أيضاً

We analyze the early X-ray flares in the GRB flare-plateau-afterglow (FPA) phase observed by Swift-XRT. The FPA occurs only in one of the seven GRB subclasses: the binary-driven hypernovae (BdHNe). This subclass consists of long GRBs with a carbon-ox ygen core and a neutron star (NS) binary companion as progenitors. The hypercritical accretion of the supernova (SN) ejecta onto the NS can lead to the gravitational collapse of the NS into a black hole. Consequently, one can observe a GRB emission with isotropic energy $E_{iso}gtrsim10^{52}$~erg, as well as the associated GeV emission and the FPA phase. Previous work had shown that gamma-ray spikes in the prompt emission occur at $sim 10^{15}$--$10^{17}$~cm with Lorentz gamma factor $Gammasim10^{2}$--$10^{3}$. Using a novel data analysis we show that the time of occurrence, duration, luminosity and total energy of the X-ray flares correlate with $E_{iso}$. A crucial feature is the observation of thermal emission in the X-ray flares that we show occurs at radii $sim10^{12}$~cm with $Gammalesssim 4$. These model independent observations cannot be explained by the fireball model, which postulates synchrotron and inverse Compton radiation from a single ultra relativistic jetted emission extending from the prompt to the late afterglow and GeV emission phases. We show that in BdHNe a collision between the GRB and the SN ejecta occurs at $simeq10^{10}$~cm reaching transparency at $sim10^{12}$~cm with $Gammalesssim4$. The agreement between the thermal emission observations and these theoretically derived values validates our model and opens the possibility of testing each BdHN episode with the corresponding Lorentz gamma factor.
We use a wavelet technique to investigate the time variations in the light curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on the behavior of the flaring region of Swift-XRT light curves in order to explore connections be tween variability time scales and pulse parameters (such as rise and decay times, widths, strengths, and separation distributions) and spectral lags. Tight correlations between some of these temporal features suggest a common origin for the production of X-ray flares and the prompt emission.
Starting from the Swift sample we define a complete sub-sample of 58 bright long Gamma Ray Bursts (GRB), 55 of them (95%) with a redshift determination, in order to characterize their properties. Our sample (BAT6) allows us to study the properties of the long GRB population and their evolution with cosmic time. We focus in particular on the GRB luminosity function, on the spectral-energy correlations of their prompt emission, on the nature of dark bursts, on possible correlations between the prompt and the X-ray afterglow properties, and on the dust extinction.
There is mounting evidence for the binary nature of the progenitors of gamma-ray bursts (GRBs). For a long GRB, the induced gravitational collapse (IGC) paradigm proposes as progenitor, or in-state, a tight binary system composed of a carbon-oxygen c ore (CO$_{core}$) undergoing a supernova (SN) explosion which triggers hypercritical accretion onto a neutron star (NS) companion. For a short GRB, a NS-NS merger is traditionally adopted as the progenitor. We divide long and short GRBs into two sub-classes, depending on whether or not a black hole (BH) is formed in the merger or in the hypercritical accretion process exceeding the NS critical mass. For long bursts, when no BH is formed we have the sub-class of X-ray flashes (XRFs), with isotropic energy $E_{iso}lesssim10^{52}$ erg and rest-frame spectral peak energy $E_{p,i}lesssim200$ keV. When a BH is formed we have the sub-class of binary-driven hypernovae (BdHNe), with $E_{iso}gtrsim10^{52}$ erg and $E_{p,i}gtrsim200$ keV. In analogy, short bursts are similarly divided into two sub-classes. When no BH is formed, short gamma-ray flashes (S-GRFs) occur, with $E_{iso}lesssim10^{52}$ erg and $E_{p,i}lesssim2$ MeV. When a BH is formed, the authentic short GRBs (S-GRBs) occur, with $E_{iso}gtrsim10^{52}$ erg and $E_{p,i}gtrsim2$ MeV. We give examples and observational signatures of these four sub-classes and their rate of occurrence. From their respective rates it is possible that in-states of S-GRFs and S-GRBs originate from the out-states of XRFs. We indicate two additional progenitor systems: white dwarf-NS and BH-NS. These systems have hybrid features between long and short bursts. In the case of S-GRBs and BdHNe evidence is given of the coincidence of the onset of the high energy GeV emission with the birth of a Kerr BH.
421 - Liang Li (1 , 2 , 3 2015
We study an extensive sample of 87 GRBs for which there are well sampled and simultaneous optical and X-ray light-curves. We extract the cleanest possible signal of the afterglow component, and compare the temporal behaviors of the X-ray light-curve, observed by Swift XRT, and optical data, observed by UVOT and ground-based telescopes for each individual burst. Overall we find 62% GRBs that are consistent with the standard afterglow model. When more advanced modeling is invoked, up to 91% of the bursts in our sample may be consistent with the external shock model. A large fraction of these bursts are consistent with occurring in a constant interstellar density medium (ISM) (61%) while only 39% of them occur in a wind-like medium. Only 9 cases have afterglow light-curves that exactly match the standard fireball model prediction, having a single power law decay in both energy bands which are observed during their entire duration. In particular, for the bursts with chromatic behavior additional model assumptions must be made over limited segments of the light-curves in order for these bursts to fully agree with the external shock model. Interestingly, for 54% of the X-ray and 40% of the optical band observations the end of the shallow decay ($t^{sim-0.5}$) period coincides with the jet break ($t^{sim-p}$) time, causing an abrupt change in decay slope. The fraction of the burst that consistent with the external shock model is independent of the observational epochs in the rest frame of GRBs. Moreover, no cases can be explained by the cooling frequency crossing the X-ray or optical band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا