ﻻ يوجد ملخص باللغة العربية
There is mounting evidence for the binary nature of the progenitors of gamma-ray bursts (GRBs). For a long GRB, the induced gravitational collapse (IGC) paradigm proposes as progenitor, or in-state, a tight binary system composed of a carbon-oxygen core (CO$_{core}$) undergoing a supernova (SN) explosion which triggers hypercritical accretion onto a neutron star (NS) companion. For a short GRB, a NS-NS merger is traditionally adopted as the progenitor. We divide long and short GRBs into two sub-classes, depending on whether or not a black hole (BH) is formed in the merger or in the hypercritical accretion process exceeding the NS critical mass. For long bursts, when no BH is formed we have the sub-class of X-ray flashes (XRFs), with isotropic energy $E_{iso}lesssim10^{52}$ erg and rest-frame spectral peak energy $E_{p,i}lesssim200$ keV. When a BH is formed we have the sub-class of binary-driven hypernovae (BdHNe), with $E_{iso}gtrsim10^{52}$ erg and $E_{p,i}gtrsim200$ keV. In analogy, short bursts are similarly divided into two sub-classes. When no BH is formed, short gamma-ray flashes (S-GRFs) occur, with $E_{iso}lesssim10^{52}$ erg and $E_{p,i}lesssim2$ MeV. When a BH is formed, the authentic short GRBs (S-GRBs) occur, with $E_{iso}gtrsim10^{52}$ erg and $E_{p,i}gtrsim2$ MeV. We give examples and observational signatures of these four sub-classes and their rate of occurrence. From their respective rates it is possible that in-states of S-GRFs and S-GRBs originate from the out-states of XRFs. We indicate two additional progenitor systems: white dwarf-NS and BH-NS. These systems have hybrid features between long and short bursts. In the case of S-GRBs and BdHNe evidence is given of the coincidence of the onset of the high energy GeV emission with the birth of a Kerr BH.
Using Gaussian Mixture Model and Expectation Maximization algorithm, we have performed a density estimation in the framework of $T_{90}$ versus hardness ratio for 296 Swift/BAT GRBs with known redshift. Here, Bayesian Information Criterion has been t
Population studies of Keplers multi-planet systems have revealed a surprising degree of structure in their underlying architectures. Information from a detected transiting planet can be combined with a population model to make predictions about the p
In order to better understand the physical origin of short duration gamma-ray bursts (GRBs), we perform time-resolved spectral analysis on a sample of 70 pulses in 68 short GRBs with burst duration $T_{90}lesssim2$ s detected by the textit{Fermi}/GBM
The occurrence rates of bright X-ray flares in z<1 gamma-ray bursts (GRBs) with or without observed supernovae (SNe) association were compared. Our Sample I: the z<1 long GRBs (LGRBs) with SNe association (SN-GRBs) and with early Swift/X-Ray Telescop
Nearby, Galactic gamma-ray bursts (GRBs) may affect the terrestrial biota if their radiation is beamed towards the Earth. Compact stellar binary mergers are possible central engines of short GRBs and their rate could be boosted in globular clusters.