ترغب بنشر مسار تعليمي؟ اضغط هنا

Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb

69   0   0.0 ( 0 )
 نشر من قبل Heng Zhou
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate seamless channel multiplexing and high bitrate superchannel transmission of coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) data signals utilizing a dissipative Kerr soliton (DKS) frequency comb generated in an on-chip microcavity. Aided by comb line multiplication through Nyquist pulse modulation, the high stability and mutual coherence among mode-locked Kerr comb lines are exploited for the first time to eliminate the guard intervals between communication channels and achieve full spectral density bandwidth utilization. Spectral efficiency as high as 2.625 bit/Hz/s is obtained for 180 CO-OFDM bands encoded with 12.75 Gbaud 8-QAM data, adding up to total bitrate of 6.885 Tb/s within 2.295 THz frequency comb bandwidth. Our study confirms that high coherence is the key superiority of Kerr soliton frequency combs over independent laser diodes, as a multi-spectral coherent laser source for high-bandwidth high-spectral-density transmission networks.



قيم البحث

اقرأ أيضاً

We present a chip-scale scanning dual-comb spectroscopy (SDCS) approach for broadband ultrahigh-resolution spectral acquisition. SDCS uses Si3N4 microring resonators that generate two single soliton micro-combs spanning 37 THz (300 nm) on the same ch ip from a single 1550-nm laser, forming a high-mutual-coherence dual-comb. We realize continuous tuning of the dual-comb system over the entire optical span of 37.5 THz with high precision using integrated microheater-based wavelength trackers. This continuous wavelength tuning is enabled by simultaneous tuning of the laser frequency and the two single soliton micro-combs over a full free spectral range of the microrings. We measure the SDCS resolution to be 319+-4.6 kHz. Using this SDCS system, we perform the molecular absorption spectroscopy of H13C14N over its 2.3 THz (18 nm)-wide overtone band, and show that the massively parallel heterodyning offered by the dual-comb expands the effective spectroscopic tuning speed of the laser by one order of magnitude. Our chip-scale SDCS opens the door to broadband spectrometry and massively parallel sensing with ultrahigh spectral resolution.
87 - X.Xu , M.Tan , J. Wu 2019
We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, o r wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.
Full phase control of THz emitting quantum cascade laser (QCL) combs has recently been demonstrated, opening new perspectives for even the most demanding applications. In this framework, simplifying the set-ups for control of these devices will help to accelerate their spreading in many fields. We report a new way to control the emission frequencies of a THz QCL comb by small optical frequency tuning (SOFT), using a very simple experimental setup, exploiting the incoherent emission of an ordinary white light emitting diode. The slightly perturbative regime accessible in these condition allows tweaking the complex refractive index of the semiconductor without destabilizing the broadband laser gain. The SOFT actuator is characterized and compared to another actuator, the QCL driving current. The suitability of this additional degree of freedom for frequency and phase stabilization of a THz QCL comb is shown and perspectives are discussed.
Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.
Dissipative Kerr-microresonator soliton combs (hereafter called soliton combs) are promising to realize chip scale integration of full soliton comb systems providing high precision, broad spectral coverage and a coherent link to the micro/mm/THz doma in with diverse applications coming on line all the time. However, the large soliton comb spacing hampers some applications. For example, for spectroscopic applications, there are simply not enough comb lines available to sufficiently cover almost any relevant absorption features. Here, we overcome this limitation by scanning the comb mode spacing by employing PDH locking and a microheater on the microresonator, showing continuous scanning of the soliton comb modes across nearly the full FSR of the microresonator without losing soliton operation, while spectral features with a bandwidth of as small of 5 MHz are resolved. Thus, comb mode scanning allows to cover the whole comb mode spectrum of tens of THz bandwidth with only one chip-scale comb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا