ترغب بنشر مسار تعليمي؟ اضغط هنا

High performance photonic microwave filters based on a 50GHz optical soliton crystal Kerr micro-comb

88   0   0.0 ( 0 )
 نشر من قبل David Moss
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.

قيم البحث

اقرأ أيضاً

We demonstrate significantly improved performance of a microwave true time delay line (TTDL) based on an integrated micro-ring resonator (MRR) Kerr optical comb source with a channel spacing of 49GHz, corresponding to 81 channels over the C-band. The broadband microcomb, with a record low free spectral range of 49GHz, results in a large number of comb lines for the TTDL, greatly reducing the size, cost, and complexity of the system. The large channel count results in a high angular resolution and wide beam steering tunable range of the phased array antenna (PAA). The enhancement of PAA performance matches well with theory, corroborating the feasibility of our approach as a competitive solution towards implementing compact low-cost TTDL in radar and communications systems.
Dissipative Kerr-microresonator soliton combs (hereafter called soliton combs) are promising to realize chip scale integration of full soliton comb systems providing high precision, broad spectral coverage and a coherent link to the micro/mm/THz doma in with diverse applications coming on line all the time. However, the large soliton comb spacing hampers some applications. For example, for spectroscopic applications, there are simply not enough comb lines available to sufficiently cover almost any relevant absorption features. Here, we overcome this limitation by scanning the comb mode spacing by employing PDH locking and a microheater on the microresonator, showing continuous scanning of the soliton comb modes across nearly the full FSR of the microresonator without losing soliton operation, while spectral features with a bandwidth of as small of 5 MHz are resolved. Thus, comb mode scanning allows to cover the whole comb mode spectrum of tens of THz bandwidth with only one chip-scale comb.
The synthesis of ultralow-noise microwaves is of both scientific and technological relevance for timing, metrology, communications and radio-astronomy. Today, the lowest reported phase noise signals are obtained via optical frequency-division using m ode-locked laser frequency combs. Nonetheless, this technique ideally requires high repetition rates and tight comb stabilisation. Here, a soliton microcomb with a 14 GHz repetition rate is generated with an ultra-stable pump laser and used to derive an ultralow-noise microwave reference signal, with an absolute phase noise level below -60 dBc/Hz at 1 Hz offset frequency and -135 dBc/Hz at 10 kHz. This is achieved using a transfer oscillator approach, where the free-running microcomb noise (which is carefully studied and minimised) is cancelled via a combination of electronic division and mixing. Although this proof-of-principle uses an auxiliary comb for detecting the microcombs offset frequency, we highlight the prospects of this method with future self-referenced integrated microcombs and electro-optic combs, that would allow for ultralow-noise microwave and sub-terahertz signal generators.
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
Reliable operation of photonic integrated circuits at cryogenic temperatures would enable new capabilities for emerging computing platforms, such as quantum technologies and low-power cryogenic computing. The silicon-on-insulator platform is a highly promising approach to developing large-scale photonic integrated circuits due to its exceptional manufacturability, CMOS compatibility and high component density. Fast, efficient and low-loss modulation at cryogenic temperatures in silicon, however, remains an outstanding challenge, particularly without the addition of exotic nonlinear optical materials. In this paper, we demonstrate DC-Kerr-effect-based modulation at a temperature of 5 K at GHz speeds, in a silicon photonic device fabricated exclusively within a CMOS process. This work opens up the path for the integration of DC Kerr modulators in large-scale photonic integrated circuits for emerging cryogenic classical and quantum computing applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا