ﻻ يوجد ملخص باللغة العربية
The Lieb-Schultz-Mattis theorem dictates that a trivial symmetric insulator in lattice models is prohibited if lattice translation symmetry and $U(1)$ charge conservation are both preserved. In this paper, we generalize the Lieb-Schultz-Mattis theorem to systems with higher-form symmetries, which act on extended objects of dimension $n > 0$. The prototypical lattice system with higher-form symmetry is the pure abelian lattice gauge theory whose action consists only of the field strength. We first construct the higher-form generalization of the Lieb-Schultz-Mattis theorem with a proof. We then apply it to the $U(1)$ lattice gauge theory description of the quantum dimer model on bipartite lattices. Finally, using the continuum field theory description in the vicinity of the Rokhsar-Kivelson point of the quantum dimer model, we diagnose and compute the mixed t Hooft anomaly corresponding to the higher-form Lieb-Schultz-Mattis theorem.
We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for symmetry protected topological (SPT) phases on boson/spin models in any dimensions. The conventional LSM theorem, applicable to e.g. any translation invariant system
We consider 2+1D lattice models of interacting bosons or spins, with both magnetic flux and fractional spin in the unit cell. We propose and prove a modified Lieb-Shultz Mattis (LSM) theorem in this setting, which applies even when the spin in the en
The Lieb-Schultz-Mattis (LSM) theorem and its higher-dimensional generalizations by Oshikawa and Hastings establish that a translation-invariant lattice model of spin-$1/2$s can not have a non-degenerate ground state preserving both spin and translat
We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground state (or, more gen
The Lieb-Schultz-Mattis (LSM) theorem states that a spin system with translation and spin rotation symmetry and half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized excitations. That is, the ground sta