ترغب بنشر مسار تعليمي؟ اضغط هنا

Termination of Electron Acceleration in Thundercloud by Intra/Inter-cloud Discharge

181   0   0.0 ( 0 )
 نشر من قبل Yuuki Wada
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An on-ground observation program for high energy atmospheric phenomena in winter thunderstorms along Japan Sea has been performed via measurements of gamma-ray radiation, atmospheric electric field and low-frequency radio band. On February 11, 2017, the radiation detectors recorded gamma-ray emission lasting for 75 sec. The gamma-ray spectrum extended up to 20 MeV and was reproduced by a cutoff power-law model with a photon index of $1.36^{+0.03}_{-0.04}$, being consistent with a Bremsstrahlung radiation from a thundercloud (as known as a gamma-ray glow and a thunderstorm ground enhancement). Then the gamma-ray glow was abruptly terminated with a nearby lightning discharge. The low-frequency radio monitors, installed $sim$50 km away from the gamma-ray observation site recorded leader development of an intra/inter-cloud discharge spreading over $sim$60 km area with a $sim$300 ms duration. The timing of the gamma-ray termination coincided with the moment when the leader development of the intra/inter-cloud discharge passed 0.7 km horizontally away from the radiation monitors. The intra/inter-cloud discharge started $sim$15 km away from the gamma-ray observation site. Therefore, the glow was terminated by the leader development, while it did not trigger the lightning discharge in the present case.



قيم البحث

اقرأ أيضاً

We designed, developed, and deployed a distributed sensor network aiming at observing high-energy ionizing radiation, primarily gamma rays, from winter thunderclouds and lightning in coastal areas of Japan. Starting in 2015, we have installed, in tot al, more than 15 units of ground-based detector system in Ishikawa Prefecture and Niigata Prefecture, and accumulated 551 days of observation time in four winter seasons from late 2015 to early 2019. In this period, our system recorded 51 gamma-ray radiation events from thundercloud and lightning. Highlights of science results obtained from this unprecedented amount of data include the discovery of photonuclear reaction in lightning which produces neutrons and positrons along with gamma rays, and deeper insights into the life cycle of a particle-acceleration and gamma-ray-emitting region in a thundercloud. The present paper reviews objective, methodology, and results of our experiment, with a stress on its instrumentation.
66 - Bin Chen 2015
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model o f solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
Beyond the attractive strong potential needed for hadronic bound states, strong interactions are predicted to provide repulsive forces depending on the color charges involved. The repulsive interactions could in principle serve for particle accelerat ion with highest gradients in the order of GeV/fm. Indirect evidence for repulsive interactions have been reported in the context of heavy meson production at colliders. In this contribution, we sketch a thought experiment to directly investigate repulsive strong interactions. For this we prepare two quarks using two simultaneous deep inelastic scattering processes off an iron target. We discuss the principle setup of the experiment and estimate the number of electrons on target required to observe a repulsive effect between the quarks.
Interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are obs erved. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically and only for strong electron beam currents. This instability generates copious amount of suprathermal electrons. The energy transfer to suprathermal electrons is the saturation mechanism of the instability.
221 - G. Qin , F.-J. Kong , S.-S. Wu 2020
We present a study of the acceleration efficiency of suprathermal electrons at collisionless shock waves driven by interplanetary coronal mass ejections (ICMEs), with the data analysis from both the spacecraft observations and test-particle simulatio ns. The observations are from the 3DP/EESA instrument onboard emph{Wind} during the 74 shock events listed in Yang et al. 2019, ApJ, and the test-particle simulations are carried out through 315 cases with different shock parameters. It is shown that a large shock-normal angle, upstream Alfv$acute{text e}$n Mach number, and shock compression ratio would enhance the shock acceleration efficiency. In addition, we develop a theoretical model of the critical shock normal angle for efficient shock acceleration by assuming the shock drift acceleration to be efficient. We also obtain models for the critical values of Mach number and compression ratio with efficient shock acceleration, based on the suggestion of Drury 1983 about the average momentum change of particle crossing of shock. It is shown that the theories have similar trends of the observations and simulations. Therefore, our results suggest that the shock drift acceleration is efficient in the electron acceleration by ICME-driven shocks, which confirms the findings of Yang et al.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا