ﻻ يوجد ملخص باللغة العربية
We investigate the Josephson radiation of nanowire (NW)-based Josephson junctions in a parallel magnetic field. The Josephson junction made of an InAs NW with superconducting Al leads shows the emission spectra which follow the Josephson frequency $f_{J}$ over the range 4-8 GHz at zero magnetic field. We observe an apparent deviation of the emission spectra from the Josephson frequency which is accompanied by a strong enhancement of the switching current above a magnetic field of $sim 300$ mT. The observed modulations can be understood to reflect trivial changes in the superconducting circuit surrounding the device which is strongly affected by the applied magnetic field. Our findings will provide a way to accurately investigate topological properties in NW-based systems.
Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana fermions towards the realisation of fault-tolerant topological quantum computing. In this study, we employ the Keldysh Non-Equilibrium Greens funct
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the
Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions
Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is