ترغب بنشر مسار تعليمي؟ اضغط هنا

Instrumentation and Future Missions in the Upcoming Era of X-Ray Polarimetry

303   0   0.0 ( 0 )
 نشر من قبل Sergio Fabiani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sergio Fabiani




اسأل ChatGPT حول البحث

The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to produce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry.



قيم البحث

اقرأ أيضاً

71 - Kevin France 2015
NASAs suborbital program provides an opportunity to conduct unique science experiments above Earths atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (100 - 160 nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, SLICE, CHESS, and SISTINE form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R > 100,000) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASAs top two technology priorities for enabling a future flagship observatory (e.g., the LUVOIR Surveyor concept) that offers factors of roughly 50 - 100 gain in ultraviolet spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.
Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first di scuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the Experiment for X-ray timing and Relativistic Astrophysics (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission Relativistic Astrophysics Explorer (RAE).
62 - Silvano Molendi 2017
Background has played an important role in X-ray missions, limiting the exploitation of science data in several and sometimes unexpected ways. In this presentation I review past X-ray missions focusing on some important lessons we can learn from them . I then go on discussing prospects for overcoming background related limitations in future ones.
81 - E. Costa 2002
X-ray Polarimetry is almost as old as X-ray Astronomy. Since the first discovery of X-ray sources theoretical analysis suggested that a high degree of linear polarization could be expected due either to the, extremely non thermal, emission mechanism or to the transfer of radiation in highly asymmetric systems. The actual implementation of this subtopic was, conversely, relatively deceiving. This is mainly due to the limitation of the conventional techniques based on the Bragg diffraction at 45deg, or on Thomson scattering around 90deg. Acually no X-ray Polarimeter has been launched since 25 years. Nevertheless the expectations from such measurement on several astrophysical targets including High and Low Mass X-Ray Binaries, isolated neutron Stars, Galactic and Extragalactic Black Holes is extremely attractive. We developed a new technique to measure the linear polarization of X-ray sources. It is based on the visualization of photoelectron tracks in a, finely subdivided, gas filled detector (micropattern). The initial direction of the photoelectron is derived and from the angular distribution of the tracks the amount and angle of polarization is computed. This technique can find an optimal exploitation in the focus of XEUS-1. Even in a very conservative configuration (basically the already existing prototype) the photoelectric polarimeter could perform polarimetry at % level on many AGNs. Further significant improvements can be expected from a technological development on the detector and with the use of XEUS-2 telescope.
The source-subtracted cosmic infrared background (CIB) fluctuations uncovered in deep Spitzer data cannot be explained by known galaxy populations and appear strongly coherent with unresolved cosmic X-ray background (CXB). This suggests that the sour ce-subtracted CIB contains emissions from significantly abundant accreting black holes (BHs). We show that theoretically such populations would have the angular power spectrum which is largely independent of the epochs occupied by these sources, provided they are at z>~ 4, offering an important test of the origin of the new populations. Using the current measurements we reconstruct the underlying soft X-ray CXB from the new sources and show that its fluctuations, while consistent with a high-z origin, have an amplitude that cannot be reached in direct measurements with the foreseeable X-ray space missions. This necessitates application of the methods developed by the authors to future IR and X-ray datasets, which must cover large areas of the sky in order to measure the signal with high precision. The LIBRAE project within ESAs Euclid mission will probe source-subtracted CIB over ~1/2 the sky at three near-IR bands, and its cross-power with unresolved CXB can be measured then from the concurrent eROSITA mission covering the same areas of the sky. We discuss the required methodology for this measurement and evaluate its projected S/N to show the unique potential of this experimental configuration to accurately probe the CXB from the new BH sources and help identify their epochs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا