ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of the background in past and future X-ray missions

63   0   0.0 ( 0 )
 نشر من قبل Silvano Molendi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Silvano Molendi




اسأل ChatGPT حول البحث

Background has played an important role in X-ray missions, limiting the exploitation of science data in several and sometimes unexpected ways. In this presentation I review past X-ray missions focusing on some important lessons we can learn from them. I then go on discussing prospects for overcoming background related limitations in future ones.



قيم البحث

اقرأ أيضاً

236 - Peter R. Young 2021
Future prospects for solar spectroscopy missions operating in the extreme ultraviolet (EUV) and soft X-ray (SXR) wavelength ranges, 1.2-1600 Angstroms, are discussed. NASA is the major funder of Solar Physics missions, and brief summaries of the oppo rtunities for mission development under NASA are given. Upcoming major solar missions from other nations are also described. The methods of observing the Sun in the two wavelength ranges are summarized with a discussion of spectrometer types, imaging techniques and detector options. The major spectral features in the EUV and SXR regions are identified, and then the upcoming instruments and concepts are summarized. The instruments range from large spectrometers on dedicated missions, to tiny, low-cost CubeSats launched through rideshare opportunities.
Thanks to high-resolution and non-dispersive spectrometers onboard future X-ray missions such as XRISM and Athena, we are finally poised to answer important questions about the formation and evolution of galaxies and large-scale structure. However, w e currently lack an adequate understanding of many atomic processes behind the spectral features we will soon observe. Large error bars on parameters as critical as transition energies and atomic cross sections can lead to unacceptable uncertainties in the calculations of e.g., elemental abundance, velocity, and temperature. Unless we address these issues, we risk limiting the full scientific potential of these missions. Laboratory astrophysics, which comprises theoretical and experimental studies of the underlying physics behind observable astrophysical processes, is therefore central to the success of these missions.
Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first di scuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the Experiment for X-ray timing and Relativistic Astrophysics (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission Relativistic Astrophysics Explorer (RAE).
302 - Sergio Fabiani 2018
The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to pr oduce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry.
119 - Kwang-il Seon 2020
We review the history of space mission in Korea focusing on the field of astronomy and astrophysics. For each mission, scientific motivation and achievement are reviewed together with some technical details of the program including mission schedule. This review includes the ongoing and currently approved missions as well as some planned ones. Within the admitted limitations of authors perspectives, some comments on the future direction of space program for astronomy and astrophysics in Korea are made at the end of this review.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا