ﻻ يوجد ملخص باللغة العربية
In this work we investigate methods to improve the efficiency and scalability of quantum algorithms for quantum chemistry applications. We propose a transformation of the electronic structure Hamiltonian in the second quantization framework into the particle-hole (p/h) picture, which offers a better starting point for the expansion of the trial wavefunction. The state of the molecular system at study is parametrized in a way to efficiently explore the sector of the molecular Fock space that contains the desired solution. To this end, we explore several trial wavefunctions to identify the most efficient parameterization of the molecular ground state. Taking advantage of known post-Hartree Fock quantum chemistry approaches and heuristic Hilbert space search quantum algorithms, we propose a new family of quantum circuits based on exchange-type gates that enable accurate calculations while keeping the gate count (i.e., the circuit depth) low. The particle-hole implementation of the Unitary Coupled Cluster (UCC) method within the Variational Quantum Eigensolver approach gives rise to an efficient quantum algorithm, named q-UCC , with important advantages compared to the straightforward translation of the classical Coupled Cluster counterpart. In particular, we show how a single Trotter step can accurately and efficiently reproduce the ground state energies of simple molecular systems.
Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule
We introduce a framework for the calculation of ground and excited state energies of bosonic systems suitable for near-term quantum devices and apply it to molecular vibrational anharmonic Hamiltonians. Our method supports generic reference modal bas
We derive an automatic procedure for generating a set of highly localized, non-orthogonal orbitals for linear scaling quantum Monte Carlo calculations. We demonstrate the advantage of these orbitals in calculations of the total energy of both semicon
The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power
In this paper we discuss a solution of the free particle Schru007fodinger equation in which the time and space dependence are not separable. The wavefunction is written as a product of exponential terms, Hermite polynomials and a phase. The peaks in