ترغب بنشر مسار تعليمي؟ اضغط هنا

Altered Modularity and Disproportional Integration in Functional Networks are Markers of Abnormal Brain Organization in Schizophrenia

63   0   0.0 ( 0 )
 نشر من قبل Matteo Cinelli
 تاريخ النشر 2018
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modularity plays an important role in brain networks architecture and influences its dynamics and the ability to integrate and segregate different modules of cerebral regions. Alterations in community structure are associated with several clinical disorders, specially schizophrenia, although its time evolution is not clear yet. In the present work, we analyze fMRI functional networks of $65$ healthy subjects (HC) and $44$ patients of schizophrenia (SZ), $28$ of them in a chronic state (CR) of illness, and $16$ at early stage (ES). We find clear differences in edges weights distribution, networks density, community structure consistency and robustness against edge removal. In comparison to healthy subjects, we found that networks from SZ patients exhibits wider weight distribution, larger overall connectivity, and are more consistent in the community structure across subjects. We also showed that the networks of SZ patients tend to be more robust to edge removal than healthy subjects, while having lower network density. In the case of early stages patients, we found that their networks exhibit topological features consistently in between the ones obtained from the other two groups, resulting in a tendency towards the chronic group state.



قيم البحث

اقرأ أيضاً

Network neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illne ss by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in forty-four medicated schizophrenic patients and forty healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones.
We analyze the connectivity structure of weighted brain networks extracted from spontaneous magnetoencephalographic (MEG) signals of healthy subjects and epileptic patients (suffering from absence seizures) recorded at rest. We find that, for the act ivities in the 5-14 Hz range, healthy brains exhibit a sparse connectivity, whereas the brain networks of patients display a rich connectivity with clear modular structure. Our results suggest that modularity plays a key role in the functional organization of brain areas during normal and pathological neural activities at rest.
This paper reports nano-CT analysis of brain tissues of schizophrenia and control cases. The analysis revealed that: (1) neuronal structures vary between individuals, (2) the mean curvature of distal neurites of the schizophrenia cases was 1.5 times higher than that of the controls, and (3) dendritic spines were categorized into two geometrically distinctive groups, though no structural differences were observed between the disease and control cases. The differences in the neurite curvature result in differences in the spatial trajectory and hence alter neuronal circuits. We suggest that the structural alteration of neurons in the schizophrenia cases should reflect psychiatric symptoms of schizophrenia.
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a emph{multi-step} cognitive task involving w ith consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed base on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and behaves obvious differences restricted to order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse function connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Attention-deficit/hyperactivity disorder (ADHD) is increasingly being diagnosed in adults, but the neural mechanisms underlying its distinct clinical symptoms (hyperactivity and inattention) remain poorly understood. Here, we used a nested-spectral p artition approach to study resting-state brain networks for ADHD patients and healthy adults and adopted hierarchical segregation and integration to predict clinical symptoms. Adult ADHD is typically characterized by an overintegrated interaction within default mode network. Limbic system is dominantly affected by ADHD and has an earlier aging functional pattern, but salient attention system is preferably affected by age and shows an opposite aging trajectory. More importantly, these two systems selectively and robustly predict distinct ADHD symptoms. Earlier-aging limbic system prefers to predict hyperactivity, and age-affected salient attention system better predicts inattention. Our findings provide a more comprehensive and deeper understanding of the neural basis of distinct ADHD symptoms and could contribute to the development of more objective clinical diagnoses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا