ﻻ يوجد ملخص باللغة العربية
This paper reports nano-CT analysis of brain tissues of schizophrenia and control cases. The analysis revealed that: (1) neuronal structures vary between individuals, (2) the mean curvature of distal neurites of the schizophrenia cases was 1.5 times higher than that of the controls, and (3) dendritic spines were categorized into two geometrically distinctive groups, though no structural differences were observed between the disease and control cases. The differences in the neurite curvature result in differences in the spatial trajectory and hence alter neuronal circuits. We suggest that the structural alteration of neurons in the schizophrenia cases should reflect psychiatric symptoms of schizophrenia.
Modularity plays an important role in brain networks architecture and influences its dynamics and the ability to integrate and segregate different modules of cerebral regions. Alterations in community structure are associated with several clinical di
Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte
We have recognized that 2D codes, i.e., a group of strongly connected neurosomes that can be simultaneously excited, are the basic data carriers for memory in a brain. An echoing mechanism between two neighboring layers of neurosomes is assumed to es
Purpose: Auditory verbal hallucinations (AVHs) are speech perceptions in the absence of a external stimulation. An influential theoretical account of AVHs in schizophrenia claims that a deficit in inner speech monitoring would cause the verbal though
Network neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illne