ﻻ يوجد ملخص باللغة العربية
Deep CNNs have achieved great success in text detection. Most of existing methods attempt to improve accuracy with sophisticated network design, while paying less attention on speed. In this paper, we propose a general framework for text detection called Guided CNN to achieve the two goals simultaneously. The proposed model consists of one guidance subnetwork, where a guidance mask is learned from the input image itself, and one primary text detector, where every convolution and non-linear operation are conducted only in the guidance mask. On the one hand, the guidance subnetwork filters out non-text regions coarsely, greatly reduces the computation complexity. On the other hand, the primary text detector focuses on distinguishing between text and hard non-text regions and regressing text bounding boxes, achieves a better detection accuracy. A training strategy, called background-aware block-wise random synthesis, is proposed to further boost up the performance. We demonstrate that the proposed Guided CNN is not only effective but also efficient with two state-of-the-art methods, CTPN and EAST, as backbones. On the challenging benchmark ICDAR 2013, it speeds up CTPN by 2.9 times on average, while improving the F-measure by 1.5%. On ICDAR 2015, it speeds up EAST by 2.0 times while improving the F-measure by 1.0%.
Many tasks are related to determining if a particular text string exists in an image. In this work, we propose a new framework that learns this task in an end-to-end way. The framework takes an image and a text string as input and then outputs the pr
Scene text detection task has attracted considerable attention in computer vision because of its wide application. In recent years, many researchers have introduced methods of semantic segmentation into the task of scene text detection, and achieved
As an important task in multimodal context understanding, Text-VQA (Visual Question Answering) aims at question answering through reading text information in images. It differentiates from the original VQA task as Text-VQA requires large amounts of s
Many previous methods have demonstrated the importance of considering semantically relevant objects for carrying out video-based human activity recognition, yet none of the methods have harvested the power of large text corpora to relate the objects
Recently end-to-end scene text spotting has become a popular research topic due to its advantages of global optimization and high maintainability in real applications. Most methods attempt to develop various region of interest (RoI) operations to con