ﻻ يوجد ملخص باللغة العربية
Using methods inspired from algebraic $K$-theory, we give a new proof of the Genauer fibration sequence, relating the cobordism categories of closed manifolds with cobordism categories of manifolds with boundaries, and of the Bokstedt-Madsen delooping of the cobordism category. Unlike the existing proofs, this approach generalizes to other cobordism-like categories of interest. Indeed we argue that the Genauer fibration sequence is an analogue, in the setting of cobordism categories, of Waldhausens Additivity theorem in algebraic $K$-theory.
We define Grothendieck-Witt spectra in the setting of Poincare $infty$-categories and show that they fit into an extension with a L- and an L-theoretic part. As consequences we deduce localisation sequences for Verdier quotients, and generalisations
The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin(2)- equivari
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is
In this paper we define and investigate Z/2-homology cobordism invariants of Z/2-homology 3-spheres which turn out to be related to classical invariants of knots. As an application we show that many lens spaces have infinite order in the Z/2-homology
Lagrangian cobordism induces a preorder on the set of Legendrian links in any contact 3-manifold. We show that any finite collection of null-homologous Legendrian links in a tight contact 3-manifold with a common rotation number has an upper bound wi