ترغب بنشر مسار تعليمي؟ اضغط هنا

On-Surface Structural and Electronic Properties of Spontaneously Formed Tb$_2$Pc$_3$ Single Molecule Magnets

68   0   0.0 ( 0 )
 نشر من قبل Jack Hellerstedt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The single molecule magnet (SMM) bis(phthalocyaninato)terbium (III) (TbPc$_2$) has attracted steady research attention as an exemplar system for realizing molecule-based spin electronics. In this paper, we report on the spontaneous formation of Tb$_2$Pc$_3$ species from TbPc$_2$ precursors via sublimation in ultrahigh vacuum (UHV) onto an Ag(111) surface. The molecules on the surface are inspected using combined scanning tunneling (STM) and non-contact atomic force microscopies (nc-AFM) at 5 Kelvin. Submolecular resolution and height dependent measurements supported by density functional theory (DFT) calculations unambiguously show the presence of both TbPc$_2$ and Tb$_2$Pc$_3$ species. The synthesis of Tb$_2$Pc$_3$ species under UHV conditions is independently confirmed by chemical analysis. The high-resolution AFM imaging allows us to register the orientation of the topmost Pc ligand in both Tb$_2$Pc$_3$ and TbPc$_2$ relative to the underlying Ag(111) surface. Measurements of the electronic structure reveal the selective appearance of a Kondo signature with temperature $sim$ 30K in the Tb$_2$Pc$_3$ species, localized to the Pc ligand lobes. We attribute the presence of the Kondo resonance on select Tb$_2$Pc$_3$ molecules to the orientation of internal molecular ligands. High-resolution AFM imaging identifies geometric distortions between Tb$_2$Pc$_3$ molecules with and without the Kondo effect, the result of the complex interplay between structural and electronic differences.

قيم البحث

اقرأ أيضاً

Magnetization, AC susceptibility and $mu$SR measurements have been performed in neutral phthalocyaninato lanthanide ([LnPc$_2]^0$) single molecule magnets in order to determine the low-energy levels structure and to compare the low-frequency spin exc itations probed by means of macroscopic techniques, such as AC susceptibility, with the ones explored by means of techniques of microscopic character, such as $mu$SR. Both techniques show a high temperature thermally activated regime for the spin dynamics and a low temperature tunneling one. While in the activated regime the correlation times for the spin fluctuations estimated by AC susceptibility and $mu$SR basically agree, clear discrepancies are found in the tunneling regime. In particular, $mu$SR probes a faster dynamics with respect to AC susceptibility. It is argued that the tunneling dynamics probed by $mu$SR involves fluctuations which do not yield a net change in the macroscopic magnetization probed by AC susceptibiliy. Finally resistivity measurements in [TbPc$_2]^0$ crystals show a high temperature nearly metallic behaviour and a low temperature activated behaviour.
The magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a Si substrate have been investigated using depth-controlled $beta$-detected nuclear magnetic resonance. A low energy beam of spin polarized radioactive 8Li was used to probe the local static magnetic field distribution near the Mn12 monolayer in the Si substrate. The resonance linewidth varies strongly as a function of implantation depth as a result of the magnetic dipolar fields generated by the Mn12 electronic magnetic moments. The temperature dependence of the linewidth indicates that the magnetic properties of the Mn12 moments in this low dimensional configuration differ from bulk Mn12.
The spin dynamics of Tb(OETAP)$_2$ single ion magnets was investigated by means of muon spin resonance ($mu$SR) both in the bulk material as well as when the system is embedded into PEDOT:PSS polymer conductor. The characteristic spin fluctuation tim e is characterized by a high temperature activated trend, with an energy barrier around 320 K, and by a low temperature tunneling regime. When the single ion magnet is embedded into the polymer the energy barrier only slightly decreases and the fluctuation time remains of the same order of magnitude even at low temperature. This finding shows that these single molecule magnets preserve their characteristics which, if combined with those of the conducting polymer, result in a hybrid material of potential interest for organic spintronics.
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o f the source and drain contacts. If the electrodes have opposite magnetizations the quantum turnstile operation allows the stepwise writing of intermediate excited states. In turn, the transient currents provide a way to read these states. Within our approach we take into account both the uniaxial and transverse anisotropy. The latter may induce additional quantum tunneling processes which affect the efficiency of the proposed read-and-write scheme. An equally weighted mixture of molecular spin states can be prepared if one of the electrodes is ferromagnetic.
A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultra narrow-line emission at an energ y of ? 1.5 eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emitting unit from the surface. The recorded spectra also reveal several vibronic peaks of low intensities that can be viewed as a fingerprint of the emitter. Surface-plasmon localized at the tip-sample interface are shown to play a major role on both excitation and emission of the molecular excitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا