ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Interpretation of Far-infrared Spectral Energy Distributions. I: The 850 $mu$m Molecular Mass Estimator

82   0   0.0 ( 0 )
 نشر من قبل George Privon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. C. Privon




اسأل ChatGPT حول البحث

We use a suite of cosmological zoom galaxy formation simulations and dust radiative transfer calculations to explore the use of the monochromatic $850~mu m$ luminosity (L$_{rm u,850}$) as a molecular gas mass (M$_{rm mol}$) estimator in galaxies between $0 < z < 9.5$ for a broad range of masses. For our fiducial simulations, where we assume the dust mass is linearly related to the metal mass, we find that empirical L$_{rm u,850}$-M$_{rm mol}$ calibrations accurately recover the molecular gas mass of our model galaxies, and that the L$_{rm u,850}$-dependent calibration is preferred. We argue the major driver of scatter in the L$_{rm u,850}$-M$_{rm mol}$ relation arises from variations in the molecular gas to dust mass ratio, rather than variations in the dust temperature, in agreement with the previous study of Liang et al. Emulating a realistic measurement strategy with ALMA observing bands that are dependent on the source redshift, we find that estimating S$_{rm u,850}$ from continuum emission at a different frequency contributes $10-20%$ scatter to the L$_{rm u,850}$-M$_{rm mol}$ relation. This additional scatter arises from a combination of mismatches in assumed T$_{dust}$ and $beta$ values, as well as the fact that the SEDs are not single-temperature blackbodies.Finally we explore the impact of a dust prescription in which the dust-to-metals ratio varies with metallicity. Though the resulting mean dust temperatures are $sim50%$ higher, the dust mass is significantly decreased for low-metallicity halos. As a result, the observationally calibrated L$_{rm u,850}$-M$_{rm mol}$ relation holds for massive galaxies, independent of the dust model, but below L$_{rm u,850}lesssim10^{28}$ erg s$^{-1}$ (metallicities $log_{10}({rm Z}/{rm Z}_{odot})lesssim -0.8$) we expect galaxies may deviate from literature observational calibrations by $gtrsim0.5$ dex.



قيم البحث

اقرأ أيضاً

To explore the connection between the global physical properties of galaxies and their far-infrared (FIR) spectral energy distributions (SEDs), we study the variation in the FIR SEDs of a set of hydrodynamically simulated galaxies that are generated by performing dust radiative transfer in post-processing. Our sample includes both isolated and merging systems at various stages of the merging process and covers infrared (IR) luminosities and dust masses that are representative of both low- and high-redshift galaxies. We study the FIR SEDs using principle component analysis (PCA) and find that 97% of the variance in the sample can be explained by two principle components (PCs). The first PC characterizes the wavelength of the peak of the FIR SED, and the second encodes the breadth of the SED. We find that the coefficients of both PCs can be predicted well using a double power law in terms of the IR luminosity and dust mass, which suggests that these two physical properties are the primary determinants of galaxies FIR SED shapes. Incorporating galaxy sizes does not significantly improve our ability to predict the FIR SEDs. Our results suggest that the observed redshift evolution in the effective dust temperature at fixed IR luminosity is not driven by geometry: the SEDs of $z sim 2-3$ ultraluminous IR galaxies (ULIRGs) are cooler than those of local ULIRGs not because the high-redshift galaxies are more extended but rather because they have higher dust masses at fixed IR luminosity. Finally, based on our simulations, we introduce a two-parameter set of SED templates that depend on both IR luminosity and dust mass.
151 - Mark Lacy 2012
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly one of the type-2s require a very hot dust component in addition to the normal torus emission.
77 - Jun Xu 2020
We investigate the intrinsic spectral energy distribution (SED) of active galactic nuclei (AGNs) at infrared (IR) bands with 42 $z < 0.5$ optically luminous Palomar Green survey quasars through SED decomposition. We decompose the SEDs of the 42 quasa rs by combining an AGN IR template library Siebenmorgen2015 that covers a wide range of the AGN parameter space with three commonly used galaxy template libraries. We determine the median AGN SED from the best-fitting results. The far-IR (FIR) contribution of our median AGN SED is significantly smaller than that of Symeonidis et al. 2016, but roughly consistent with that of Lyu et al. 2017. The AGN IR SED becomes cooler with increasing bolometric luminosity, which might be due to that more luminous AGNs might have stronger radiative feedback to change torus structures and/or their tori might have higher metallicities. Our conclusions do not depend on the choice of galaxy template libraries. However, since the predicted polycyclic aromatic hydrocarbon (PAH) emission line flux is galaxy template-dependent, cautions should be taken on deriving galaxy FIR contribution from PAH fluxes.
We present ongoing work on the spectral energy distributions (SEDs) of active galactic nuclei (AGNs), derived from X-ray, ultraviolet, optical, infrared and radio photometry and spectroscopy. Our work is motivated by new wide-field imaging surveys th at will identify vast numbers of AGNs, and by the need to benchmark AGN SED fitting codes. We have constructed 41 SEDs of individual AGNs and 80 additional SEDs that mimic Seyfert spectra. All of our SEDs span 0.09 to 30 microns, while some extend into the X-ray and/or radio. We have tested the utility of the SEDs by using them to generate AGN photometric redshifts, and they outperform SEDs from the prior literature, including reduced redshift errors and flux density residuals.
We present spectral energy distributions (SEDs) of 41 active galactic nuclei, derived from multiwavelength photometry and archival spectroscopy. All of the SEDs span at least 0.09 to 30 micron, but in some instances wavelength coverage extends into t he X-ray, far-infrared and radio. For some AGNs we have fitted the measured far-infrared photometry with greybody models, while radio flux density measurements have been approximated by power-laws or polynomials. We have been able to fill some of the gaps in the spectral coverage using interpolation or extrapolation of simple models. In addition to the 41 individual AGN SEDs, we have produced 72 Seyfert SEDs by mixing SEDs of the central regions of Seyferts with galaxy SEDs. Relative to the literature, our templates have broader wavelength coverage and/or higher spectral resolution. We have tested the utility of our SEDs by using them to generate photometric redshifts for 0 < z < 6.12 AGNs in the Bootes field (selected with X-ray, IR and optical criteria) and, relative to SEDs from the literature, they produce comparable or better photometric redshifts with reduced flux density residuals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا