ﻻ يوجد ملخص باللغة العربية
In this paper we analyze Garden-of-Eden (GoE) states and fixed points of monotone, sequential dynamical systems (SDS). For any monotone SDS and fixed update schedule, we identify a particular set of states, each state being either a GoE state or reaching a fixed point, while both determining if a state is a GoE state and finding out all fixed points are generally hard. As a result, we show that the maximum size of their limit cycles is strictly less than ${nchoose lfloor n/2 rfloor}$. We connect these results to the Knaster-Tarski theorem and the LYM inequality. Finally, we establish that there exist monotone, parallel dynamical systems (PDS) that cannot be expressed as monotone SDS, despite the fact that the converse is always true.
In this paper we establish a new connection between central sets and the strong coincidence conjecture for fixed points of irreducible primitive substitutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological
A new class of critical points, termed as perpetual points, where acceleration becomes zero but the velocity remains non-zero, are observed in dynamical systems. The velocity at these points is either maximum or minimum or of inflection behavior.Thes
Let X be a subset of R^n whose interior is connected and dense in X, ordered by a polyhedral cone in R^n with nonempty interior. Let T be a monotone homeomorphism of X whose periodic points are dense. Then T is periodic.
We prove that on B-free subshifts, with B satisfying the Erdos condition, all cellular automata are determined by monotone sliding block codes. In particular, this implies the validity of the Garden of Eden theorem for such systems.
A sequential dynamical system (SDS) consists of a graph, a set of local functions and an update schedule. A linear sequential dynamical system is an SDS whose local functions are linear. In this paper, we derive an explicit closed formula for any lin