ﻻ يوجد ملخص باللغة العربية
While a specific kind of strange metal is increasingly found to be the normal states in a wide variety of unconventional superconductors, its microscopic origin is presently a hotly debated enigma. Using dynamical mean-field theory (DMFT) based on hybridization expansion of continuous-time quantum Monte-Carlo (CTQMC) solver for an extended two-band Hubbard model (2BHM), we investigate the conditions underlying the emergence of such a metal. Specifically, we tie strange metallicity to an orbital-selective Mottness in 2BHM or momentum-selective Mott phase (OSMP) in 2D Hubbard models inspired by a cluster-to-orbital mapping. We find $(i)$ disparate spin and charge responses, $(ii)$ fractional power-law behavior and $omega/T$-scaling in the charge and spin fluctuation responses, and $(iii)$ very good accord with optical conductivity and nuclear magnetic relaxation rates in the slightly underdoped normal states of cuprates and Fe-arsenides. We analyze the local problem using bosonization to show that such anomalous responses arise from a lattice orthogonality catastrophe specifically in the OSMP. Our work establishes the intimate link between strange metallicity and selective Mottness in quantum matter.
We outline a general mechanism for Orbital-selective Mott transition (OSMT), the coexistence of both itinerant and localized conduction electrons, and show how it can take place in a wide range of realistic situations, even for bands of identical wid
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed
We present a comprehensive study of the spin excitations - as measured by the dynamical spin structure factor $S(q,omega)$ - of the so-called block-magnetic state of low-dimensional orbital-selective Mott insulators. We realize this state via both a
We study the Mott metal-insulator transition in the two-band Hubbard model with different hopping amplitudes $t_1$ and $t_2$ for the two orbitals on the two-dimensional square lattice by using {it non-magnetic} variational wave functions, similarly t
We study the phase transition in Cu-substituted iron-based superconductors with a new developed real-space Greens function method. We find that Cu substitution has strong effect on the orbital-selective Mott transition introduced by the Hunds rule co