ﻻ يوجد ملخص باللغة العربية
The problem of finding an optimal curve for the target magnetic axis of a stellarator is addressed. Euler-Lagrange equations are derived for finite length three-dimensional curves that extremise their bending energy while yielding fixed integrated torsion. The obvious translational and rotational symmetry is exploited to express solutions in a preferred cylindrical coordinate system in terms of elliptic Jacobi functions. These solution curves, which, up to similarity transformations, depend on three dimensionless parameters, do not necessarily close. Two closure conditions are obtained for the vertical and toroidal displacement (the radial coordinate being trivially periodic) to yield a countably infinite set of one-parameter families of closed non-planar curves. The behaviour of the integrated torsion (Twist of the Frenet frame), the Linking of the Frenet frame and the Writhe of the solution curves is studied in light of the Calugareanu theorem. A refreshed interpretation of Merciers formula for the on-axis rotational transform of stellarator magnetic field-lines is proposed.
After characterizing the integrable discrete analogue of the Eulers elastica, we focus our attention on the problem of approximating a given discrete planar curve by an appropriate discrete Eulers elastica. We carry out the fairing process via a $L^2
In this paper we consider the log-aesthetic curves and their generalization which are used in CAGD. We consider those curves under similarity geometry and characterize them as stationary integrable flow on plane curves which is governed by the Burger
It is shown that the magnetic-field coils of a stellarator can, at least in principle, be substantially simplified by the use of permanent magnets. Such magnets cannot create toroidal magnetic flux but they can be used to shape the plasma and thus to
With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and
A good understanding of the confinement of energetic ions in non-axisymmetric magnetic fields is key for the design of reactors based on the stellarator concept. In this work, we develop a model that, based on the radially-local bounce-averaged drift