ﻻ يوجد ملخص باللغة العربية
Traditional authentication in radio-frequency (RF) systems enable secure data communication within a network through techniques such as digital signatures and hash-based message authentication codes (HMAC), which suffer from key recovery attacks. State-of-the-art IoT networks such as Nest also use Open Authentication (OAuth 2.0) protocols that are vulnerable to cross-site-recovery forgery (CSRF), which shows that these techniques may not prevent an adversary from copying or modeling the secret IDs or encryption keys using invasive, side channel, learning or software attacks. Physical unclonable functions (PUF), on the other hand, can exploit manufacturing process variations to uniquely identify silicon chips which makes a PUF-based system extremely robust and secure at low cost, as it is practically impossible to replicate the same silicon characteristics across dies. Taking inspiration from human communication, which utilizes inherent variations in the voice signatures to identify a certain speaker, we present RF- PUF: a deep neural network-based framework that allows real-time authentication of wireless nodes, using the effects of inherent process variation on RF properties of the wireless transmitters (Tx), detected through in-situ machine learning at the receiver (Rx) end. The proposed method utilizes the already-existing asymmetric RF communication framework and does not require any additional circuitry for PUF generation or feature extraction. Simulation results involving the process variations in a standard 65 nm technology node, and features such as LO offset and I-Q imbalance detected with a neural network having 50 neurons in the hidden layer indicate that the framework can distinguish up to 4800 transmitters with an accuracy of 99.9% (~ 99% for 10,000 transmitters) under varying channel conditions, and without the need for traditional preambles.
Physical unclonable functions (PUF) in silicon exploit die-to-die manufacturing variations during fabrication for uniquely identifying each die. Since it is practically a hard problem to recreate exact silicon features across dies, a PUFbased authent
Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. I
Security and privacy of the users have become significant concerns due to the involvement of the Internet of things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measur
Recurrent neural networks (RNNs) have shown promising results in audio and speech processing applications due to their strong capabilities in modelling sequential data. In many applications, RNNs tend to outperform conventional models based on GMM/UB
Over the past several years, the electrocardiogram (ECG) has been investigated for its uniqueness and potential to discriminate between individuals. This paper discusses how this discriminatory information can help in continuous user authentication b