ﻻ يوجد ملخص باللغة العربية
Let $mathfrak g = mathfrak{gl}_N(k)$, where $k$ is an algebraically closed field of characteristic $p > 0$, and $N in mathbb Z_{ge 1}$. Let $chi in mathfrak g^*$ and denote by $U_chi(mathfrak g)$ the corresponding reduced enveloping algebra. The Kac--Weisfeiler conjecture, which was proved by Premet, asserts that any finite dimensional $U_chi(mathfrak g)$-module has dimension divisible by $p^{d_chi}$, where $d_chi$ is half the dimension of the coadjoint orbit of $chi$. Our main theorem gives a classification of $U_chi(mathfrak g)$-modules of dimension $p^{d_chi}$. As a consequence, we deduce that they are all parabolically induced from a 1-dimensional module for $U_0(mathfrak h)$ for a certain Levi subalgebra $mathfrak h$ of $mathfrak g$; we view this as a modular analogue of M{oe}glins theorem on completely primitive ideals in $U(mathfrak{gl}_N(mathbb C))$. To obtain these results, we reduce to the case $chi$ is nilpotent, and then classify the 1-dimensional modules for the corresponding restricted $W$-algebra.
The affine evaluation map is a surjective homomorphism from the quantum toroidal ${mathfrak {gl}}_n$ algebra ${mathcal E}_n(q_1,q_2,q_3)$ to the quantum affine algebra $U_qwidehat{mathfrak {gl}}_n$ at level $kappa$ completed with respect to the homog
We define a $mathfrak{gl}_N$-stratification of the Grassmannian of $N$ planes $mathrm{Gr}(N,d)$. The $mathfrak{gl}_N$-stratification consists of strata $Omega_{mathbf{Lambda}}$ labeled by unordered sets $mathbf{Lambda}=(lambda^{(1)},dots,lambda^{(n)}
Let $mathfrak g$ be a simple Lie algebra over $mathbb C$ and let $e in mathfrak g$ be nilpotent. We consider the finite $W$-algebra $U(mathfrak g,e)$ associated to $e$ and the problem of determining the variety $mathcal E(mathfrak g,e)$ of 1-dimensio
On a Fock space constructed from $mn$ free bosons and lattice ${Bbb {Z}}^{mn}$, we give a level $n$ action of the quantum toroidal algebra $mathscr {E}_m$ associated to $mathfrak{gl}_m$, together with a level $m$ action of the quantum toroidal algebr
The essential feature of a root-graded Lie algebra L is the existence of a split semisimple subalgebra g with respect to which L is an integrable module with weights in a possibly non-reduced root system S of the same rank as the root system R of g.