ﻻ يوجد ملخص باللغة العربية
On a Fock space constructed from $mn$ free bosons and lattice ${Bbb {Z}}^{mn}$, we give a level $n$ action of the quantum toroidal algebra $mathscr {E}_m$ associated to $mathfrak{gl}_m$, together with a level $m$ action of the quantum toroidal algebra ${mathscr E}_n$ associated to ${mathfrak {gl}}_n$. We prove that the $mathscr {E}_m$ transfer matrices commute with the $mathscr {E}_n$ transfer matrices after an appropriate identification of parameters.
The affine evaluation map is a surjective homomorphism from the quantum toroidal ${mathfrak {gl}}_n$ algebra ${mathcal E}_n(q_1,q_2,q_3)$ to the quantum affine algebra $U_qwidehat{mathfrak {gl}}_n$ at level $kappa$ completed with respect to the homog
In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal
We define a $mathfrak{gl}_N$-stratification of the Grassmannian of $N$ planes $mathrm{Gr}(N,d)$. The $mathfrak{gl}_N$-stratification consists of strata $Omega_{mathbf{Lambda}}$ labeled by unordered sets $mathbf{Lambda}=(lambda^{(1)},dots,lambda^{(n)}
In 1990 Beilinson, Lusztig and MacPherson provided a geometric realization of modified quantum $mathfrak{gl}_n$ and its canonical basis. A key step of their work is a construction of a monomial basis. Recently, Du and Fu provided an algebraic constru
We begin a study of the representation theory of quantum continuous $mathfrak{gl}_infty$, which we denote by $mathcal E$. This algebra depends on two parameters and is a deformed version of the enveloping algebra of the Lie algebra of difference oper