ترغب بنشر مسار تعليمي؟ اضغط هنا

Reducing DRAM Refresh Overheads with Refresh-Access Parallelism

253   0   0.0 ( 0 )
 نشر من قبل Kevin Chang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This article summarizes the idea of refresh-access parallelism, which was published in HPCA 2014, and examines the works significance and future potential. The overarching objective of our HPCA 2014 paper is to reduce the significant negative performance impact of DRAM refresh with intelligent memory controller mechanisms. To mitigate the negative performance impact of DRAM refresh, our HPCA 2014 paper proposes two complementary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray Access Refresh Parallelization). The goal is to address the drawbacks of state-of-the-art per-bank refresh mechanism by building more efficient techniques to parallelize refreshes and accesses within DRAM. First, instead of issuing per-bank refreshes in a round-robin order, as it is done today, DARP issues per-bank refreshes to idle banks in an out-of-order manner. Furthermore, DARP proactively schedules refreshes during intervals when a batch of writes are draining to DRAM. Second, SARP exploits the existence of mostly-independent subarrays within a bank. With minor modifications to DRAM organization, it allows a bank to serve memory accesses to an idle subarray while another subarray is being refreshed. Our extensive evaluations on a wide variety of workloads and systems show that our mechanisms improve system performance (and energy efficiency) compared to three state-of-the-art refresh policies, and their performance bene ts increase as DRAM density increases.



قيم البحث

اقرأ أيضاً

66 - Hasan Hassan 2016
DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster acces s to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.
To employ a Convolutional Neural Network (CNN) in an energy-constrained embedded system, it is critical for the CNN implementation to be highly energy efficient. Many recent studies propose CNN accelerator architectures with custom computation units that try to improve energy-efficiency and performance of CNNs by minimizing data transfers from DRAM-based main memory. However, in these architectures, DRAM is still responsible for half of the overall energy consumption of the system, on average. A key factor of the high energy consumption of DRAM is the refresh overhead, which is estimated to consume 40% of the total DRAM energy. In this paper, we propose a new mechanism, Refresh Triggered Computation (RTC), that exploits the memory access patterns of CNN applications to reduce the number of refresh operations. We propose three RTC designs (min-RTC, mid-RTC, and full-RTC), each of which requires a different level of aggressiveness in terms of customization to the DRAM subsystem. All of our designs have small overhead. Even the most aggressive RTC design (i.e., full-RTC) imposes an area overhead of only 0.18% in a 16 Gb DRAM chip and can have less overhead for denser chips. Our experimental evaluation on six well-known CNNs show that RTC reduces average DRAM energy consumption by 24.4% and 61.3%, for the least aggressive and the most aggressive RTC implementations, respectively. Besides CNNs, we also evaluate our RTC mechanism on three workloads from other domains. We show that RTC saves 31.9% and 16.9% DRAM energy for Face Recognition and Bayesian Confidence Propagation Neural Network (BCPNN), respectively. We believe RTC can be applied to other applications whose memory access patterns remain predictable for a sufficiently long time.
This paper summarizes the idea of Subarray-Level Parallelism (SALP) in DRAM, which was published in ISCA 2012, and examines the works significance and future potential. Modern DRAMs have multiple banks to serve multiple memory requests in parallel. H owever, when two requests go to the same bank, they have to be served serially, exacerbating the high latency of on-chip memory. Adding more banks to the system to mitigate this problem incurs high system cost. Our goal in this work is to achieve the benefits of increasing the number of banks with a low-cost approach. To this end, we propose three new mechanisms, SALP-1, SALP-2, and MASA (Multitude of Activated Subarrays), to reduce the serialization of different requests that go to the same bank. The key observation exploited by our mechanisms is that a modern DRAM bank is implemented as a collection of subarrays that operate largely independently while sharing few global peripheral structures. Our three proposed mechanisms mitigate the negative impact of bank serialization by overlapping different components of the bank access latencies of multiple requests that go to different subarrays within the same bank. SALP-1 requires no changes to the existing DRAM structure, and needs to only reinterpret some of the existing DRAM timing parameters. SALP-2 and MASA require only modest changes (< 0.15% area overhead) to the DRAM peripheral structures, which are much less design constrained than the DRAM core. Our evaluations show that SALP-1, SALP-2 and MASA significantly improve performance for both single-core systems (7%/13%/17%) and multi-core systems (15%/16%/20%), averaged across a wide range of workloads. We also demonstrate that our mechanisms can be combined with application-aware memory request scheduling in multicore systems to further improve performance and fairness.
In this work, we propose FUSE, a novel GPU cache system that integrates spin-transfer torque magnetic random-access memory (STT-MRAM) into the on-chip L1D cache. FUSE can minimize the number of outgoing memory accesses over the interconnection networ k of GPUs multiprocessors, which in turn can considerably improve the level of massive computing parallelism in GPUs. Specifically, FUSE predicts a read-level of GPU memory accesses by extracting GPU runtime information and places write-once-read-multiple (WORM) data blocks into the STT-MRAM, while accommodating write-multiple data blocks over a small portion of SRAM in the L1D cache. To further reduce the off-chip memory accesses, FUSE also allows WORM data blocks to be allocated anywhere in the STT-MRAM by approximating the associativity with the limited number of tag comparators and I/O peripherals. Our evaluation results show that, in comparison to a traditional GPU cache, our proposed heterogeneous cache reduces the number of outgoing memory references by 32% across the interconnection network, thereby improving the overall performance by 217% and reducing energy cost by 53%.
70 - Pietro Frigo 2020
After a plethora of high-profile RowHammer attacks, CPU and DRAM vendors scrambled to deliver what was meant to be the definitive hardware solution against the RowHammer problem: Target Row Refresh (TRR). A common belief among practitioners is that, for the latest generation of DDR4 systems that are protected by TRR, RowHammer is no longer an issue in practice. However, in reality, very little is known about TRR. In this paper, we demystify the inner workings of TRR and debunk its security guarantees. We show that what is advertised as a single mitigation mechanism is actually a series of different solutions coalesced under the umbrella term TRR. We inspect and disclose, via a deep analysis, different existing TRR solutions and demonstrate that modern implementations operate entirely inside DRAM chips. Despite the difficulties of analyzing in-DRAM mitigations, we describe novel techniques for gaining insights into the operation of these mitigation mechanisms. These insights allow us to build TRRespass, a scalable black-box RowHammer fuzzer. TRRespass shows that even the latest generation DDR4 chips with in-DRAM TRR, immune to all known RowHammer attacks, are often still vulnerable to new TRR-aware variants of RowHammer that we develop. In particular, TRRespass finds that, on modern DDR4 modules, RowHammer is still possible when many aggressor rows are used (as many as 19 in some cases), with a method we generally refer to as Many-sided RowHammer. Overall, our analysis shows that 13 out of the 42 modules from all three major DRAM vendors are vulnerable to our TRR-aware RowHammer access patterns, and thus one can still mount existing state-of-the-art RowHammer attacks. In addition to DDR4, we also experiment with LPDDR4 chips and show that they are susceptible to RowHammer bit flips too. Our results provide concrete evidence that the pursuit of better RowHammer mitigations must continue.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا