ﻻ يوجد ملخص باللغة العربية
Coronal mass ejections (CMEs) are intense solar explosive eruptions, and they are frequently correlated with prominence eruptions. Previous observations show that about $70%$ of CMEs are associated with prominence eruptions. However, there are only a handful of reported observations of prominence plasma materials within interplanetary CMEs (ICMEs), which are the interplanetary manifestations of CMEs. Moreover, approximately $4%$ of ICMEs exhibit the presence of prominence materials, and approximately $12%$ of magnetic clouds (MCs) contain prominence materials. We aim to comprehensively search for cold prominence materials in MCs observed by the Advanced Composition Explorer (ACE) spacecraft during 1998-2007. Using the criteria of unusual $O^{5+}$ and (or) $Fe^{6+}$ abundances, we examined 76 MCs observed by ACE during 1998-2007 to search for cold prominence materials. Our results revealed that out of the 76 MCs, 27 ($36%$) events contained prominence material regions with low-charge-state signatures. Although the fraction is still lower than the approximately $70%$ of CMEs associated with prominence eruptions, it is much higher than $12%$. The unusual $O^{5+}$ and (or) $Fe^{6+}$ abundances may be simple and reliable criteria to investigate prominence materials in the interplanetary medium.
Previous studies indicate that interplanetary small magnetic flux ropes (SMFRs) are manifestations of microflare-associated small coronal mass ejections (CMEs), and the hot material with high charge states heated by related microflares are found in S
Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space
A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Magnetic clouds are structures th
The twisted local magnetic field at the front or rear regions of the magnetic clouds (MCs) associated with interplanetary coronal mass ejections (ICMEs) is often nearly opposite to the direction of the ambient interplanetary magnetic field (IMF). The
The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work d