ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulations of disc-planet interactions

121   0   0.0 ( 0 )
 نشر من قبل Richard P. Nelson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gravitational interaction between a protoplanetary disc and planetary sized bodies that form within it leads to the exchange of angular momentum, resulting in migration of the planets and possible gap formation in the disc for more massive planets. In this article, we review the basic theory of disc-planet interactions, and discuss the results of recent numerical simulations of planets embedded in protoplanetary discs. We consider the migration of low mass planets and recent developments in our understanding of so-called type I migration when a fuller treatment of the disc thermodynamics is included. We discuss the runaway migration of intermediate mass planets (so-called type III migration), and the migration of giant planets (type II migration) and the associated gap formation in the disc. The availability of high performance computing facilities has enabled global simulations of magnetised, turbulent discs to be computed, and we discuss recent results for both low and high mass planets embedded in such discs.



قيم البحث

اقرأ أيضاً

141 - S.-J. Paardekooper 2009
One class of protoplanetary disc models, the X-wind model, predicts strongly subkeplerian orbital gas velocities, a configuration that can be sustained by magnetic tension. We investigate disc-planet interactions in these subkeplerian discs, focusing on orbital migration for low-mass planets and gap formation for high-mass planets. We use linear calculations and nonlinear hydrodynamical simulations to measure the torque and look at gap formation. In both cases, the subkeplerian nature of the disc is treated as a fixed external constraint. We show that, depending on the degree to which the disc is subkeplerian, the torque on low-mass planets varies between the usual Type I torque and the one-sided outer Lindblad torque, which is also negative but an order of magnitude stronger. In strongly subkeplerian discs, corotation effects can be ignored, making migration fast and inward. Gap formation near the planets orbit is more difficult in such discs, since there are no resonances close to the planet accommodating angular momentum transport. In stead, the location of the gap is shifted inwards with respect to the planet, leaving the planet on the outside of a surface density depression. Depending on the degree to which a protoplanetary disc is subkeplerian, disc-planet interactions can be very different from the usual Keplerian picture, making these discs in general more hazardous for young planets.
205 - C. Schaefer , R. Speith , M. Hipp 2004
We have performed Smoothed Particle Hydrodynamics (SPH) simulations to study the time evolution of one and two protoplanets embedded in a protoplanetary accretion disc. We investigate accretion and migration rates of a single protoplanet depending on several parameters of the protoplanetary disc, mainly viscosity and scale height. Additionally, we consider the influence of a second protoplanet in a long time simulation and examine the migration of the two planets in the disc, especially the growth of eccentricity and chaotic behaviour. One aim of this work is to establish the feasibility of SPH for such calculations considering that usually only grid-based methods are adopted. To resolve shocks and to prevent particle penetration, we introduce a new approach for an artificial viscosity, which consists of an additional artificial bulk viscosity term in the SPH-representation of the Navier-Stokes equation. This allows for an accurate treatment of the physical kinematic viscosity to describe the shear, without the use of an artificial shear viscosity.
66 - Jhih-Wei Chen 2018
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdins newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number $10^{-3}$ and dust-to-gas ratio $Sigma_mathrm{d}/Sigma_mathrm{g}=0.5$ , a `bubble develops inside the planets co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdins dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.
We study the stability of gaps opened by a giant planet in a self-gravitating protoplanetary disc. We find a linear instability associated with both the self-gravity of the disc and local vortensity maxima which coincide with gap edges. For our model s, these edge modes develop and extend to twice the orbital radius of a Saturn mass planet in discs with disc-to-star mass ratio >0.06, corresponding to a Toomre Q < 1.5 at the outer disc boundary. Unlike the local vortex-forming instabilities associated with gap edges in weakly or non-self-gravitating low viscosity discs, the edge modes are global and exist only in sufficiently massive discs, but for the typical viscosity values adopted for protoplanetary discs. Analytic modelling and linear calculations show edge modes may be interpreted as a localised disturbance associated with a gap edge inducing activity in the extended disc, through the launching of density waves excited at Lindblad resonances. Nonlinear hydrodynamic simulations are performed to investigate the evolution of edge modes in disc-planet systems. The form and growth rates of unstable modes are consistent with linear theory. Their dependence on viscosity and gravitational softening is also explored. We also performed a first study of the effect of edge modes on planetary migration. We found that if edge modes develop, then the average disc-on-planet torque becomes more positive with increasing disc mass. In simulations where the planet was allowed to migrate, although a fast type III migration could be seen that was similar to that seen in non-self-gravitating discs, we found that it was possible for the planet to interact gravitationally with the spiral arms associated with an edge mode and that this could result in the planet being scattered outwards. Thus orbital migration is likely to be complex and non monotonic in massive discs of the type we consider.
The MPF mission will provide a statistical census of exoplanets with masses greater than 0.1 Earth-masses and orbital separations ranging from 0.5AU to infinity. This includes analogs to all the Solar Systems planets except for Mercury, as well as mo st types of planets predicted by planet formation theories. Such a survey will provide results on the frequency of planets around all types of stars except those with short lifetimes. Close-in planets with separations < 0.5 AU are invisible to a space-based microlensing survey, but these can be found by Kepler. Other methods, including ground-based microlensing, cannot approach the comprehensive statistics on the mass and semi-major axis distribution of extrasolar planets that a space-based microlensing survey will provide. The terrestrial planet sensitivity of a ground-based microlensing survey is limited to the vicinity of the Einstein radius at 2-3 AU, and space-based imaging is needed to identify and determine the mass of the planetary host stars for the vast majority of planets discovered by microlensing. Thus, a space-based microlensing survey is likely to be the only way to gain a comprehensive understanding of the architecture of planetary systems, which is needed to understand planet formation and habitability. MPF can accomplish these objectives with proven technology and a cost of $333 million (excluding launch vehicle).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا