ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of the adiabatic parameter in monoatomic thermal and non-thermal plasmas

53   0   0.0 ( 0 )
 نشر من قبل Miguel Avillez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

{bf Context.} Numerical models of the evolution of interstellar and integalactic plasmas often assume that the adiabatic parameter $gamma$ (the ratio of the specific heats) is constant (5/3 in monoatomic plasmas). However, $gamma$ is determined by the total internal energy of the plasma, which depends on the ionic and excitation state of the plasma. Hence, the adiabatic parameter may not be constant across the range of temperatures available in the interstellar medium. {bf Aims.} We aim to carry out detailed simulations of the thermal evolution of plasmas with Maxwell-Boltzmann and non-thermal ($kappa$ and $n$) electron distributions in order to determine the temperature variability of the total internal energy and of the adiabatic parameter. {bf Methods.} The plasma, composed of H, He, C, N, O, Ne, Mg, Si, S, and Fe atoms and ions, evolves under collisional ionization equilibrium conditions, from an initial temperature of $10^9$ K. The calculations include electron impact ionization, radiative and dielectronic recombinations and line excitation. The ionization structure was calculated (...) using the Gauss elimination method with scaled partial pivoting. Numerical integrations (...) were carried out using the double-exponential over a semi-finite interval method. In both methods a precision of $10^{-15}$ is adopted. {bf Results.} The total internal energy of the plasma is mainly dominated by the ionization energy for temperatures lower than $8times 10^4$ K with the excitation energy having a contribution of less than one percent. In thermal and non-thermal plasmas composed of H, He, and metals, the adiabatic parameter evolution is determined by the H and He ionizations leading to a profile in general having three transitions. However, for $kappa$ distributed plasmas these three transitions are not observed for $kappa<15$ (...). In general, $gamma$ varies from 1.01 to 5/3.



قيم البحث

اقرأ أيضاً

This contribution summarizes the splinter session Non-thermal processes in coronae and beyond held at the Cool Stars 17 workshop in Barcelona in 2012. It covers new developments in high energy non-thermal effects in the Earths exosphere, solar and st ellar flares, the diffuse emission in star forming regions and reviews the state and the challenges of the underlying atomic databases.
130 - H. Krawczynski 2003
We describe new Chandra spectroscopy data of the cluster which harbors the prototypical head tail radio galaxy 3C 129 and the weaker radio galaxy 3C 129.1. We combined the Chandra data with Very Large Array (VLA) radio data taken at 0.33, 5, and 8 GH z (archival data) and 1.4 GHz (new data). We also obtained new HI observations at the Dominion Radio Astrophysical Observatory (DRAO) to measure the neutral Hydrogen column density in the direction of the cluster with arcminute angular resolution. The Chandra observation reveals extended X-ray emission from the radio galaxy 3C 129.1 with a total luminosity of 1.5E+41 erg/s. The X-ray excess is resolved into an extended central source of ~2 arcsec (1 kpc) diameter and several point sources with an individual luminosity up to 2.1E+40 erg/s. In the case of the radio galaxy 3C 129, the Chandra observation shows, in addition to core and jet X-ray emission reported in an earlier paper, some evidence for extended, diffuse X-ray emission from a region east of the radio core. The 12 arcsec x 36 arcsec (6 kpc x 17 kpc) region lies in front of the radio core, in the same direction into which the radio galaxy is moving. We use the radio and X-ray data to study in detail the pressure balance between the non-thermal radio plasma and the thermal Intra Cluster Medium (ICM) along the tail of 3C 129 which extends over 15 arcmin (427 kpc). Depending on the assumed lower energy cutoff of the electron energy spectrum, the minimum pressure of the radio plasma lies a factor of between 10 and 40 below the ICM pressure for a large part of the tail. We discuss several possibilities to explain the apparent pressure mismatch.
Thermal plasma of solar atmosphere includes a wide range of temperatures. This plasma is often quantified, both in observations and models, by a differential emission measure (DEM). DEM is a distribution of the thermal electron density square over te mperature. In observations, the DEM is computed along a line of sight, while in the modeling -- over an elementary volume element (voxel). This description of the multi-thermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission (EUV), which has an optically thin character. However, there is no corresponding treatment in the radio domain, where optical depth of emission can be large, more than one emission mechanism are involved, and plasma effects are important. Here, we extend the theory of the thermal gyroresonance and free-free radio emissions in the classical mono-temperature Maxwellian plasma to the case of a multi-temperature plasma. The free-free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multi-temperature plasma is used which describes the distribution of the thermal electron density over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to considered effects. The theory is implemented in available computer code.
131 - L. Cerrigone 2017
We present new JVLA multi-frequency measurements of a set of stars in transition from the post-AGB to the Planetary Nebula phase monitored in the radio range over several years. Clear variability is found for five sources. Their light curves show inc reasing and decreasing patterns. New radio observations at high angular resolution are also presented for two sources. Among these is IRAS 18062+2410, whose radio structure is compared to near-infrared images available in the literature. With these new maps, we can estimate inner and outer radii of 0.03$$ and 0.08$$ for the ionised shell, an ionised mass of $3.2times10^{-4}$ M$_odot$, and a density at the inner radius of $7.7times 10^{-5}$ cm$^{-3}$, obtained by modelling the radio shell with the new morphological constraints. The combination of multi-frequency data and, where available, spectral-index maps leads to the detection of spectral indices not due to thermal emission, contrary to what one would expect in planetary nebulae. Our results allow us to hypothesise the existence of a link between radio variability and non-thermal emission mechanisms in the nebulae. This link seems to hold for IRAS 22568+6141 and may generally hold for those nebulae where the radio flux decreases over time.
Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev-Zeldovich (SZ) effect instruments. Additionally, non-thermal electrons (re-)energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma) and the farthest (El Gordo) clusters with known radio relics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا