ﻻ يوجد ملخص باللغة العربية
The well-known Baker-Campbell-Hausdorff theorem in Lie theory says that the logarithm of a noncommutative product e X e Y can be expressed in terms of iterated commutators of X and Y. This paper provides a gentle introduction t{o} Ecalles mould calculus and shows how it allows for a short proof of the above result, together with the classical Dynkin explicit formula [Dy47] for the logarithm, as well as another formula recently obtained by T. Kimura [Ki17] for the product of exponentials itself. We also analyse the relation between the two formulas and indicate their mould calculus generalization to a product of more exponentials.
We present a compact Baker-Campbell-Hausdorff-Dynkin formula for the composition of Lorentz transformations $e^{sigma_i}$ in the spin representation (a.k.a. Lorentz rotors) in terms of their generators $sigma_i$: $$ ln(e^{sigma_1}e^{sigma_2}) = t
The operad of moulds is realized in terms of an operational calculus of formal integrals (continuous formal power series). This leads to many simplifications and to the discovery of various suboperads. In particular, we prove a conjecture of the firs
The ring operations and the metric on $C(X)$ are extended to the set $mathbb{H}_{nf}(X)$ of all nearly finite Hausdorff continuous interval valued functions and it is shown that $mathbb{H}_{nf}(X)$ is both rationally and topologically complete. Hence
An explicit martingale representation for random variables described as a functional of a Levy process will be given. The Clark-Ocone theorem shows that integrands appeared in a martingale representation are given by conditional expectations of Malli
This note reviews the Peano-Baker series and its use to solve the general linear system of ODEs. The account is elementary and self-contained, and is meant as a pedagogic introduction to this approach, which is well known but usually treated as a fol