ﻻ يوجد ملخص باللغة العربية
We apply the Marchenko method of quantum inverse scattering to study nucleon scattering problems. Assuming a $beta/r^2$ type repulsive core and comparing our results to the Reid93 phenomenological potential we estimate the constant $beta$, determining the singularity strength, in various spin/isospin channels. Instead of using Bargmann type S-matrices which allows only integer singularity strength, here we consider an analytical approach based on the incomplete data method, which is suitable for fractional singularity strengths as well.
A second-order supersymmetric transformation is presented, for the two-channel Schrodinger equation with equal thresholds. It adds a Breit-Wigner term to the mixing parameter, without modifying the eigenphase shifts, and modifies the potential matrix
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, wi
We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts $(L+1/2) delta_{JLS} (
Background: Modern ab initio theory combined with high-quality nucleon-nucleon (NN) and three-nucleon (3N) interactions from chiral effective field theory (EFT) can provide a predictive description of low-energy light-nuclei reactions relevant for as
[Background] The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. [Purpose] In an attempt to understand the di