ﻻ يوجد ملخص باللغة العربية
We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts $(L+1/2) delta_{JLS} (p)$ and the scaled mixing parameters $(L+1/2)epsilon_{JLS}(p)$ in terms of the impact parameter $b=(L+1/2)/p$. According to the eikonal approximation, at large angular momentum $L$ these functions should become an universal function of $b$, {it independent} on $L$. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than $5 sigma$ with the Granada-2013 statistical analysis, more than $ 2 sigma$ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about $1 sigma $ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.
We apply the low-energy theorems to analyze the recent lattice QCD results for the two-nucleon system at a pion mass of $M_pisimeq 450$ MeV obtained by the NPLQCD collaboration. We find that the binding energies of the deuteron and dineutron are inco
During the workshop Compton Scattering off Protons and Light Nuclei: pinning down the nucleon polarisabilities (ECT*, Trento, Italy, 29 July -- 2 August 2013, http://www.ectstar.eu/node/98), recent developments had been reviewed in experimental and t
We investigate the dependence of polarisation observables in elastic deuteron Compton scattering below the pion production threshold on the spin-independent and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The calculation uses Ch
We study $eta$ photoproduction off the deuteron ($gamma dtoeta pn$) at a special kinematics: $sim 0.94$ GeV of the photon beam energy and $sim 0^circ$ of the scattering angle of the proton. This kinematics is ideal to extract the low-energy $eta$-nuc
The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to