ترغب بنشر مسار تعليمي؟ اضغط هنا

Low energy peripheral scaling in Nucleon-Nucleon Scattering and uncertainty quantification

80   0   0.0 ( 0 )
 نشر من قبل Enrique Ruiz Arriola
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts $(L+1/2) delta_{JLS} (p)$ and the scaled mixing parameters $(L+1/2)epsilon_{JLS}(p)$ in terms of the impact parameter $b=(L+1/2)/p$. According to the eikonal approximation, at large angular momentum $L$ these functions should become an universal function of $b$, {it independent} on $L$. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than $5 sigma$ with the Granada-2013 statistical analysis, more than $ 2 sigma$ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about $1 sigma $ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.

قيم البحث

اقرأ أيضاً

We apply the low-energy theorems to analyze the recent lattice QCD results for the two-nucleon system at a pion mass of $M_pisimeq 450$ MeV obtained by the NPLQCD collaboration. We find that the binding energies of the deuteron and dineutron are inco nsistent with the low-energy behavior of the corresponding phase shifts within the quoted uncertainties and vice versa. Using the binding energies of the deuteron and dineutron as input, we employ the low-energy theorems to predict the phase shifts and extract the scattering length and the effective range in the $^3S_1$ and $^1S_0$ channels. Our results for these quantities are consistent with those obtained by the NPLQCD collaboration from effective field theory analyses but are in conflict with their determination based on the effective-range approximation.
During the workshop Compton Scattering off Protons and Light Nuclei: pinning down the nucleon polarisabilities (ECT*, Trento, Italy, 29 July -- 2 August 2013, http://www.ectstar.eu/node/98), recent developments had been reviewed in experimental and t heoretical studies of real and virtual Compton scattering, static and generalized dipole scalar and spin polarisabilities of nucleons, as well as related phenomena in physics of muonic atoms. A vivid topic at the workshop was pathways towards the most precise extraction of the static polarisabilities from low-energy Compton cattering---including pertinent theoretical uncertainties. Being asked by our experimental colleagues, we prepared during the workshop a short letter with conclusions of the discussion, emphasising future prospects.
We investigate the dependence of polarisation observables in elastic deuteron Compton scattering below the pion production threshold on the spin-independent and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The calculation uses Ch iral Effective Field Theory with dynamical Delta(1232) degrees of freedom in the Small Scale Expansion at next-to-leading order. Resummation of the NN intermediate rescattering states and including the Delta induces sizeable effects. The analysis considers cross-sections and the analysing power of linearly polarised photons on an unpolarised target, and cross-section differences and asymmetries of linearly and circularly polarised beams on a vector-polarised deuteron. An intuitive argument helps one to identify kinematics in which one or several polarisabilities do not contribute. Some double-polarised observables are only sensitive to linear combinations of two of the spin-polarisabilities, simplifying a multipole-analysis of the data. Spin-polarisabilities can be extracted at photon energies gtrsim 100 MeV, after measurements at lower energies of lesssim 70 MeV provide high-accuracy determinations of the spin-independent ones. An interactive Mathematica 7.0 notebook of our findings is available from [email protected].
106 - S.X. Nakamura 2018
We study $eta$ photoproduction off the deuteron ($gamma dtoeta pn$) at a special kinematics: $sim 0.94$ GeV of the photon beam energy and $sim 0^circ$ of the scattering angle of the proton. This kinematics is ideal to extract the low-energy $eta$-nuc leon scattering parameters such as $a_{eta N}$ (scattering length) and $r_{eta N}$ (effective range) because the $eta$-nucleon elastic scattering is significantly enhanced. We show that if a ratio $R$, the $gamma dtoeta pn$ cross section divided by the $gamma ptoeta p$ cross section convoluted with the proton momentum distribution in the deuteron, is measured with 5% error, ${rm Re}[a_{eta N}]$ (${rm Re}[r_{eta N}]$) can be determined at the precision of $simpm$0.1 fm ($simpm$0.5 fm), significantly narrowing down the currently estimated range of the parameters. The measurement is ongoing at the Research Center for Electron Photon Science (ELPH), Tohoku University.
The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا