ﻻ يوجد ملخص باللغة العربية
We present results from a medium-resolution (R ~ 2, 000) spectroscopic follow-up campaign of 1,694 bright (V < 13.5), very metal-poor star candidates from the RAdial Velocity Experiment (RAVE). Initial selection of the low-metallicity targets was based on the stellar parameters published in RAVE Data Releases 4 and 5. Follow-up was accomplished with the Gemini-N and Gemini-S, the ESO/NTT, the KPNO/Mayall, and the SOAR telescopes. The wavelength coverage for most of the observed spectra allows for the determination of carbon and {alpha}-element abundances, which are crucial for con- sidering the nature and frequency of the carbon-enhanced metal-poor (CEMP) stars in this sample. We find that 88% of the observed stars have [Fe/H] <= -1.0, 61% have [Fe/H] <= -2.0, and 3% have [Fe/H] <= -3.0 (with four stars at [Fe/H] <= -3.5). There are 306 CEMP star candidates in this sample, and we identify 169 CEMP Group I, 131 CEMP Group II, and 6 CEMP Group III stars from the A(C) vs. [Fe/H] diagram. Inspection of the [alpha/C] abundance ratios reveals that five of the CEMP Group II stars can be classified as mono-enriched second-generation stars. Gaia DR1 matches were found for 734 stars, and we show that transverse velocities can be used as a confirmatory selection criteria for low-metallicity candidates. Selected stars from our validated list are being followed-up with high-resolution spectroscopy, to reveal their full chemical abundance patterns for further studies.
Stellar population studies of globular clusters have suggested that the brightest clusters in the Galaxy might actually be the remnant nuclei of dwarf spheroidal galaxies. If the present Galactic globular clusters formed within larger stellar systems
Stars which start their lives with spectral types O and early-B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming ga
We present synthetic spectra and SEDs computed along evolutionary tracks at Z=1/5 Zsun and Z=1/30 Zsun, for masses between 15 and 150 Msun. We predict that the most massive stars all start their evolution as O2 dwarfs at sub-solar metallicities. The
We present a chemical abundance analysis of a metal-poor star, ROA 276, in the stellar system omega Centauri. We confirm that this star has an unusually high [Sr/Ba] abundance ratio. Additionally, ROA 276 exhibits remarkably high abundance ratios, [X
Metal-poor massive stars dominate the light we observe from star-forming dwarf galaxies and may have produced the bulk of energetic photons that reionized the universe at high redshift. Yet, the rarity of observations of individual O stars below the