ﻻ يوجد ملخص باللغة العربية
Bohmian mechanics, widely known within the field of the quantum foundations, has been a quite useful resource for computational and interpretive purposes in a wide variety of practical problems. Here, it is used to establish a comparative analysis at different levels of approximation in the problem of the diffraction of helium atoms from a substrate consisting of a defect with axial symmetry on top of a flat surface. The motivation behind this work is to determine which aspects of one level survive in the next level of refinement and, therefore, to get a better idea of what we usually denote as quantum-classical correspondence. To this end, first a quantum treatment of the problem is performed with both an approximated hard-wall model and then with a realistic interaction potential model. The interpretation and explanation of the features displayed by the corresponding diffraction intensity patterns is then revisited with a series of trajectory-based approaches: Fermatian trajectories (optical rays), Newtonian trajectories and Bohmian trajectories. As it is seen, while Fermatian and Newtonian trajectories show some similarities, Bohmian trajectories behave quite differently due to their implicit non-classicality.
The diffraction-like process displayed by a spatially localized matter wave is here analyzed in a case where the free evolution is frustrated by the presence of hard-wall-type boundaries (beyond the initial localization region). The phenomenon is inv
We report on the observation of emerging beam resonances, well known as Rayleigh-Wood anomalies and threshold resonances in photon and electron diffraction, respectively, in an atom-optical diffraction experiment. Diffraction of He atom beams reflect
We discuss Bohmian paths of the two-level atoms moving in a waveguide through an external resonance-producing field, perpendicular to the waveguide, and localized in a region of finite diameter. The time spent by a particle in a potential region is n
We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicit
The fringe pattern that allows geometrical and orbital structure information to be extracted from LIED spectra of symmetric molecules is shown to reflect a symmetry conservation principle. We show that under a field polarization which preserves certa