ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) layered materials emerge in recent years as a new platform to host novel electronic, optical or excitonic physics and develop unprecedented nanoelectronic and energy applications. By definition, these materials are strongly anisotropic between within the basal plane and cross the plane. The structural and property anisotropies inside their basal plane, however, are much less investigated. Herein, we report a rare chemical form of arsenic, called black-arsenic (b-As), as an extremely anisotropic layered semiconductor. We have performed systematic characterization on the structural, electronic, thermal and electrical properties of b-As single crystals, with particular focus on its anisotropies along two in-plane principle axes, armchair (AC) and zigzag (ZZ). Our analysis shows that b-As exhibits higher or comparable electronic, thermal and electric transport anisotropies between the AC and ZZ directions than any other known 2D crystals. Such extreme in-plane anisotropies are able to potentially implement novel ideas for scientific research and device applications.
Two-dimensional (2D) materials are promising candidates for next-generation electronic devices. In this regime, insulating 2D ferromagnets, which remain rare, are of special importance due to their potential for enabling new device architectures. Her
We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our o
The structure and mobility of dislocations in the layered semiconductor InSe is studied within a multiscale approach based on generalized Peierls--Nabarro model with material-specific parametrization derived from first principles. The plasticity of I
Transition metal dichalcogenides (TMD) possess novel properties which makes them potential candidates for various spintronic applications. Heterostructures of TMD with magnetic thin film have been extensively considered for spin-orbital torque, enhan
Two-dimensional (2D) ferromagnets have recently drawn extensive attention, and here we study the electronic structure and magnetic properties of the bulk and monolayer of CrSBr, using first-principles calculations and Monte Carlo simulations. Our res