ترغب بنشر مسار تعليمي؟ اضغط هنا

Triaxial magnetic anisotropy in two-dimensional ferromagnetic semiconductor CrSBr

557   0   0.0 ( 0 )
 نشر من قبل Ke Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) ferromagnets have recently drawn extensive attention, and here we study the electronic structure and magnetic properties of the bulk and monolayer of CrSBr, using first-principles calculations and Monte Carlo simulations. Our results show that bulk CrSBr is a magnetic semiconductor and has the easy magnetization b-axis, hard c-axis, and intermediate a-axis. Thus, the experimental triaxial magnetic anisotropy (MA) is well reproduced here, and it is identified to be the joint effects of spin-orbit coupling (SOC) and magnetic dipole-dipole interaction. We find that bulk CrSBr has a strong ferromagnetic (FM) intralayer coupling but a marginal interlayer one. We also study CrSBr monolayer in detail and find that the intralayer FM exchange persists and the shape anisotropy has a more pronounced contribution to the MA. Using the parameters of the FM exchange and the triaxial MA, our Monte Carlo simulations show that CrSBr monolayer has Curie temperature Tc = 175 K. Moreover, we find that a uniaxial tensile (compressive) strain along the a (b) axis would further increase the Tc.



قيم البحث

اقرأ أيضاً

The recent discovery of two-dimensional (2D) magnets offers unique opportunities for the experimental exploration of low-dimensional magnetism4 and the magnetic proximity effects, and for the development of novel magnetoelectric, magnetooptic and spi ntronic devices. These advancements call for 2D materials with diverse magnetic structures as well as effective probes for their magnetic symmetries, which is key to understanding intralayer magnetic order and interlayer magnetic coupling. Here we apply second harmonic generation (SHG), a technique acutely sensitive to symmetry breaking, to probe the magnetic structure of a new 2D magnetic semiconductor, CrSBr. We find that CrSBr monolayers are ferromagnetically ordered below 146 K, an observation enabled by the discovery of a giant magnetic dipole SHG effect in the centrosymmetric 2D structure. In multilayers, the ferromagnetic monolayers are coupled antiferromagnetically, with the Neel temperature notably increasing with decreasing layer number. The magnetic structure of CrSBr, comprising spins co-aligned in-plane with rectangular unit cell, differs markedly from the prototypical 2D hexagonal magnets CrI3 and Cr2Ge2Te6 with out-of-plane moments. Moreover, our SHG analysis suggests that the order parameters of the ferromagnetic monolayer and the antiferromagnetic bilayer are the magnetic dipole and the magnetic toroidal moments, respectively. These findings establish CrSBr as an exciting 2D magnetic semiconductor and SHG as a powerful tool to probe 2D magnetic symmetry, opening the door to the exploration of coupling between magnetic order and excitonic/electronic properties, as well as the magnetic toroidal moment, in a broad range of applications.
136 - Yulu Ren , Yanfeng Ge , Wenhui Wan 2019
Recently, two-dimensional ferromagnetic semiconductors have been an important class of materials for many potential applications in spintronic devices. Based on density functional theory, we systematically explore the magnetic and electronic properti es of CrGeS$_3$ with the monolayer structures. The comparison of total energy between different magnetic states ensures the ferromagnetic ground state of monolayer CrGeS$_3$. It is also shown that ferromagnetic and semiconducting properties are exhibited in monolayer CrGeS$_3$ with the magnetic moment of 3 $mu_{B}$ for each Cr atom, donated mainly by the intense $dp$$sigma$-hybridization of Cr $e_g$-S $p$. There are the bandgap of 0.70 eV of spin-up state in the monolayer structure when 0.77 eV in spin-down state. The global gap is 0.34 eV (2.21 eV by using HSE06 functional), which originates from bonding $dpsigma$ hybridized states of Cr $e_g$-S $p$ and unoccupied Cr $t_{2g}$-Ge $p$ hybridization. Besides, we estimate that the monolayer CrGeS$_3$ possesses the Curie temperature of 161 K by mean-field theory.
Two-dimensional (2D) multiferroics have been casted great attention owing to their promising prospects for miniaturized electronic and memory devices.Here, we proposed a highly stable 2D multiferroic, VOF monolayer, which is an intrinsic ferromagneti c half semiconductor with large spin polarization ~2 $mu_{B}/V$ atom and a significant uniaxial magnetic anisotropy along a-axis (410 $mu eV/V$ atom). Meanwhile, it shows excellent ferroelectricity with a large spontaneous polarization 32.7 $mu C/cm^{2}$ and a moderate energy barrier (~43 meV/atom) between two ferroelectric states, which can be ascribed to the Jahn-Teller distortion.Moreover, VOF monolayer harbors an ultra-large negative Poissons ratio in the in-plane direction (~-0.34). The Curie temperature evaluated from the Monte Carlo simulations based on the Ising model is about 215 K, which can be enhanced room temperature under -4% compressive biaxial strain.The combination of ferromagnetism and ferroelectricity in the VOF monolayer could provide a promising platform for future study of multiferroic effects and next-generation multifunctional nanoelectronic device applications.
Non-coplanar spin textures with scalar spin chirality can generate effective magnetic field that deflects the motion of charge carriers, resulting in topological Hall effect (THE), a powerful probe of the ground state and low-energy excitations of co rrelated systems. However, spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy has not been considered in prior studies. Herein, we report direct evidence of universal spin chirality fluctuation by probing the THE above the transition temperatures in two different ferromagnetic ultra-thin films, SrRuO$_3$ and V doped Sb$_2$Te$_3$. The temperature, magnetic field, thickness, and carrier type dependences of the THE signal, along with our Monte-Carlo simulations, unambiguously demonstrate that the spin chirality fluctuation is a universal phenomenon in two-dimensional Ising ferromagnets. Our discovery opens a new paradigm of exploring the spin chirality with topological Hall transport in two-dimensional magnets and beyond
Employing elastic and inelastic neutron scattering (INS) techniques, we report on detailed microscopic properties of the ferromagnetism in he magnetic topological insulator (Bi$_{0.95}$Mn$_{0.05}$)$_{2}$Te$_{3}$. Neutron diffraction of polycrystallin e samples show the ferromagnetic (FM) ordering is long-range within the basal plane, and mainly 2D in character with short-range correlations between layers below $T_{mathrm{C}} approx 13$ K. Despite the random distribution of the dliute Mn atoms, we find that the 2D-like magnetic peaks are commensurate with the chemical structure, and the absence of (00L) magnetic peaks denote that the Mn$^{2+}$ magnetic moments are normal to the basal planes. Surprisingly, we observed collective magnetic excitations, in this dilute magnetic system. Despite the dilute nature, the excitations are typical of quasi-2D FM systems, albeit are severely broadened at short wavelengths, likely due to the random spatial distribution of Mn atoms in the Bi planes. Detailed analysis of the INS provide energy scales of the exchange couplings and the single ion anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا