ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-commuting varieties

45   0   0.0 ( 0 )
 نشر من قبل Weiqiang Wang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the anti-commuting variety which consists of pairs of anti-commuting $ntimes n$ matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT quotient of the anti-commuting variety with respect to the conjugation action of $GL_n$ is shown to be of pure dimension $n$. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension $n^2$ and describe its irreducible components.



قيم البحث

اقرأ أيضاً

This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, extends previous conjectures c oncerning their dimensions, and generalizes the superset method.
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varietie s are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
We prove some combinatorial conjectures extending those proposed in [13, 14]. The proof uses a vertex operator due to Nekrasov, Okounkov, and the first author [4] to obtain a gluing formula for the relevant generating series, essentially reducing the computation to the case of complex projective space with three punctures.
121 - Adrian Langer 2019
We show various properties of smooth projective D-affine varieties. In particular, any smooth projective D-affine variety is algebraically simply connected and its image under a fibration is D-affine. In characteristic zero such D-affine varieties ar e also uniruled. We also show that (apart from a few small characteristics) a smooth projective surface is D-affine if and only if it is isomorphic to either ${mathbb P}^2$ or ${mathbb P}^1times {mathbb P}^1$. In positive characteristic, a basic tool in the proof is a new generalization of Miyaokas generic semipositivity theorem.
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo sition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا