ﻻ يوجد ملخص باللغة العربية
Slow variations (quenches) of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench rate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate $delta$ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, after crossing the critical point the system tends to reabsorb the defects formed during the first part of the ramp: the number of excitations exhibits a crossover behavior as a function of $delta$ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.
The presence of non-local and long-range interactions in quantum systems induces several peculiar features in their equilibrium and out-of-equilibrium behavior. In current experimental platforms control parameters such as interaction range, temperatu
We investigate an extension of the quantum Ising model in one spatial dimension including long-range $1 / r^{alpha}$ interactions in its statics and dynamics with possible applications from heteronuclear polar molecules in optical lattices to trapped
We unveil a mechanism for generating oscillations with arbitrary multiplets of the period of a given external drive, in long-range interacting quantum many-particle spin systems. These oscillations break discrete time translation symmetry as in time
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law ($1/r^{alpha}$) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body phys