ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Phenomena and Kibble-Zurek Scaling in the Long-Range Quantum Ising Chain

83   0   0.0 ( 0 )
 نشر من قبل Daniel Jaschke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate an extension of the quantum Ising model in one spatial dimension including long-range $1 / r^{alpha}$ interactions in its statics and dynamics with possible applications from heteronuclear polar molecules in optical lattices to trapped ions described by two-state spin systems. We introduce the statics of the system via both numerical techniques with finite size and infinite size matrix product states and a theoretical approaches using a truncated Jordan-Wigner transformation for the ferromagnetic and antiferromagnetic case and show that finite size effects have a crucial role shifting the quantum critical point of the external field by fifteen percent between thirty-two and around five-hundred spins. We numerically study the Kibble-Zurek hypothesis in the long-range quantum Ising model with Matrix Product States. A linear quench of the external field through the quantum critical point yields a power-law scaling of the defect density as a function of the total quench time. For example, the increase of the defect density is slower for longer-range models and the critical exponent changes by twenty-five per cent. Our study emphasizes the importance of such long-range interactions in statics and dynamics that could point to similar phenomena in a different setup of dynamical systems or for other models.



قيم البحث

اقرأ أيضاً

Environmental interaction is a fundamental consideration in any controlled quantum system. While interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects including induced spin-spin correlations. In this paper we show that under quite general conditions, a dissipative bosonic bath can induce a long-range ordered phase, without the inclusion of any additional direct spin-spin couplings. Through a quantum-to-classical mapping and classical Monte Carlo simulation, we investigate the $T=0$ quantum phase transition of an Ising chain embedded in a bosonic bath with Ohmic dissipation. We show that the quantum critical point is continuous, Lorentz invariant with a dynamical critical exponent $z=1.07(9)$, has correlation length exponent $ u=0.80(5)$, and anomalous exponent $eta=1.02(6)$, thus the universality class distinct from the previously studied limiting cases. The implications of our results on experiments in ultracold atomic mixtures and qubit chains in dissipative environments are discussed.
The presence of non-local and long-range interactions in quantum systems induces several peculiar features in their equilibrium and out-of-equilibrium behavior. In current experimental platforms control parameters such as interaction range, temperatu re, density and dimension can be changed. The existence of universal scaling regimes, where diverse physical systems and observables display quantitative agreement, generates a common framework, where the efforts of different research communities can be -- in some cases rigorously -- connected. Still, the application of this general framework to particular experimental realisations requires the identification of the regimes where the universality phenomenon is expected to appear. In the present review we summarise the recent investigations of many-body quantum systems with long-range interactions, which are currently realised in Rydberg atom arrays, dipolar systems, trapped ion setups and cold atoms in cavity experiments. Our main aim is to present and identify the common and (mostly) universal features induced by long-range interactions in the behaviour of quantum many-body systems. We will discuss both the case of very strong non-local couplings, i.e. the non-additive regime, and the one in which energy is extensive, but nevertheless low-energy, long wavelength properties are altered with respect to the short-range limit. Cases of competition with other local effects in the above mentioned setups are also reviewed.
In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mo tt insulator to the superfluid (SF) crossing a second-order phase transition. We first solve a time-dependent Schrodinger equation for the experimental setup recently done by Braun et.al. [Proc. Nat. Acad. Sci. 112, 3641 (2015)] and show that the numerical and experimental results are in fairly good agreement. However, these results disagree with the Kibble-Zurek scaling. From our numerical study, we reveal a possible source of the discrepancy. Next, we calculate the critical exponents of the correlation length and vortex density in addition to the SF order parameter for a Kibble-Zurek protocol. We show that beside the freeze time $hat{t}$, there exists another important time, $t_{rm eq}$, at which an oscillating behavior of the SF amplitude starts. From calculations of the exponents of the correlation length and vortex density with respect to a quench time $tQ$, we obtain a physical picture of a coarsening process. Finally, we study how the system evolves after the quench. We give a global picture of dynamics of the Bose-Hubbard model.
Slow variations (quenches) of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench r ate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate $delta$ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, after crossing the critical point the system tends to reabsorb the defects formed during the first part of the ramp: the number of excitations exhibits a crossover behavior as a function of $delta$ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.
The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics when a system is driven through a second-order quantum phase transition. However, for first-order quantum phase transitions, the Kibble-Zurek mechanism is usually not applicable. Here, we experimentally demonstrate and theoretically analyze a power-law scaling in the dynamics of a spin-1 condensate across a first-order quantum phase transition when a system is slowly driven from a polar phase to an antiferromagnetic phase. We show that this power-law scaling can be described by a generalized Kibble-Zurek mechanism. Furthermore, by experimentally measuring the spin population, we show the power-law scaling of the temporal onset of spin excitations with respect to the quench rate, which agrees well with our numerical simulation results. Our results open the door for further exploring the generalized Kibble-Zurek mechanism to understand the dynamics across first-order quantum phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا