ﻻ يوجد ملخص باللغة العربية
We investigate the process of cloud cavitation collapse through large-scale simulation of a cloud composed of 12500 gas bubbles. A finite volume scheme is used on a structured Cartesian grid to solve the Euler equations, and the bubbles are discretized by a diffuse interface method. We investigate the propagation of the collapse wave front through the cloud and provide comparisons to simplified models. We analyze the flow field to identify each bubble of the cloud and its associated microjet. We find that the oscillation frequency of the bubbles and the velocity magnitude of the microjets depend on the local strength of the collapse wave and hence on the radial position of the bubbles in the cloud. At the same time, the direction of the microjets is influenced by the distribution of the bubbles in its vicinity. Finally, an analysis of the pressure pulse spectrum shows that the pressure pulse rate is well captured by an exponential law.
Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sh
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or
A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme.
The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas dis
This paper extends the gas-kinetic scheme for one-dimensional inviscid shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to multidimensional gas dynamic equations under gravitational fields. Four important issues in the construction