ﻻ يوجد ملخص باللغة العربية
A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme. The multi-level MPI/OpenMP parallelization is implemented with the aim to efficiently utilise the computational resources to allow direct simulation of rarefied gas flows in porous media based on digital rock images for the first time. The multi-level parallel approach is analyzed in details confirming its better performance than the commonly-used MPI processing alone for an iterative scheme. With high communication efficiency and appropriate load balancing among CPU processes, parallel efficiency of 94% is achieved for 1536 cores in the 2D simulations, and 81% for 12288 cores in the 3D simulations. While decomposition in the spatial space does not affect the simulation results, one additional benefit of this approach is that the number of subdomains can be kept minimal to avoid deterioration of the convergence rate of the iteration process. This multi-level parallel approach can be readily extended to solve other Boltzmann model equations.
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke
One of the central problems in the study of rarefied gas dynamics is to find the steady-state solution of the Boltzmann equation quickly. When the Knudsen number is large, i.e. the system is highly rarefied, the conventional iteration scheme can lead
In this paper, we consider a non-local (in time) two-phase flow model. The non-locality is introduced through the wettability alteration induced dynamic capillary pressure function. We present a monotone fixed-point iterative linearization scheme for
A high-order method to evolve in time electromagnetic and velocity fields in conducting fluids with non-periodic boundaries is presented. The method has a small overhead compared with fast FFT-based pseudospectral methods in periodic domains. It uses
We introduce a numerical solver for the spatially inhomogeneous Boltzmann equation using the Burnett spectral method. The modelling and discretization of the collision operator are based on the previous work [Z. Cai, Y. Fan, and Y. Wang, Burnett spec