ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-level parallel solver for rarefied gas flows in porous media

68   0   0.0 ( 0 )
 نشر من قبل Minh Tuan Ho
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high-performance gas kinetic solver using multi-level parallelization is developed to enable pore-scale simulations of rarefied flows in porous media. The Boltzmann model equation is solved by the discrete velocity method with an iterative scheme. The multi-level MPI/OpenMP parallelization is implemented with the aim to efficiently utilise the computational resources to allow direct simulation of rarefied gas flows in porous media based on digital rock images for the first time. The multi-level parallel approach is analyzed in details confirming its better performance than the commonly-used MPI processing alone for an iterative scheme. With high communication efficiency and appropriate load balancing among CPU processes, parallel efficiency of 94% is achieved for 1536 cores in the 2D simulations, and 81% for 12288 cores in the 3D simulations. While decomposition in the spatial space does not affect the simulation results, one additional benefit of this approach is that the number of subdomains can be kept minimal to avoid deterioration of the convergence rate of the iteration process. This multi-level parallel approach can be readily extended to solve other Boltzmann model equations.

قيم البحث

اقرأ أيضاً

159 - Lianhua Zhu , Xingcai Pi , Wei Su 2020
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke y ingredients of GSIS are that the gas kinetic equation and macroscopic synthetic equations are tightly coupled, and the constitutive relations in macroscopic synthetic equations explicitly contain Newtons law of shear stress and Fouriers law of heat conduction. The higher-order constitutive relations describing rarefaction effects are calculated from the velocity distribution function, however, their constructions are simpler than our previous work (Su et al. Journal of Computational Physics 407 (2020) 109245) for linearized gas kinetic equations. On the other hand, solutions of macroscopic synthetic equations are used to inform the evolution of gas kinetic equation at the next iteration step. A rigorous linear Fourier stability analysis in periodic system shows that the error decay rate of GSIS can be smaller than 0.5, which means that the deviation to steady-state solution can be reduced by 3 orders of magnitude in 10 iterations. Other important advantages of the GSIS are (i) it does not rely on the specific form of Boltzmann collision operator and (ii) it can be solved by sophisticated techniques in computational fluid dynamics, making it amenable to large scale engineering applications. In this paper, the efficiency and accuracy of GSIS is demonstrated by a number of canonical test cases in rarefied gas dynamics.
121 - Wei Su , Lianhua Zhu , Peng Wang 2019
One of the central problems in the study of rarefied gas dynamics is to find the steady-state solution of the Boltzmann equation quickly. When the Knudsen number is large, i.e. the system is highly rarefied, the conventional iteration scheme can lead to convergence within a few iterations. However, when the Knudsen number is small, i.e. the flow falls in the near-continuum regime, hundreds of thousands iterations are needed, and yet the converged solutions are prone to be contaminated by accumulated error and large numerical dissipation. Recently, based on the gas kinetic models, the implicit unified gas kinetic scheme (UGKS) and its variants have significantly reduced the iterations in the near-continuum flow regime, but still much higher than that of the highly rarefied gas flows. In this paper, we put forward a general synthetic iteration scheme (GSIS) to find the steady-state solutions of general rarefied gas flows within dozens of iterations at any Knudsen number. As the GSIS does not rely on the specific kinetic model/collision operator, it can be naturally extended to quickly find converged solutions for mixture flows and even flows involving chemical reactions. These two superior advantages are also expected to accelerate the slow convergence in simulation of near-continuum flows via the direct simulation Monte Carlo method and its low-variance version.
In this paper, we consider a non-local (in time) two-phase flow model. The non-locality is introduced through the wettability alteration induced dynamic capillary pressure function. We present a monotone fixed-point iterative linearization scheme for the resulting non-standard model. The scheme treats the dynamic capillary pressure functions semi-implicitly and introduces an $L$-scheme type cite{List2016, Radu2015} stabilization term in the pressure as well as the transport equations. We prove the convergence of the proposed scheme theoretically under physically acceptable assumptions and verify the theoretical analysis with numerical simulations. The scheme is implemented and tested for a variety of reservoir heterogeneity in addition to the dynamic change of the capillary pressure function. The proposed scheme satisfies the predefined stopping criterion within a few numbers of iterations. We also compared the performance of the proposed scheme against the iterative IMplicit Pressure Explicit Saturation scheme
A high-order method to evolve in time electromagnetic and velocity fields in conducting fluids with non-periodic boundaries is presented. The method has a small overhead compared with fast FFT-based pseudospectral methods in periodic domains. It uses the magnetic vector potential formulation for accurately enforcing the null divergence of the magnetic field, and allowing for different boundary conditions including perfectly conducting walls or vacuum surroundings, two cases relevant for many astrophysical, geophysical, and industrial flows. A spectral Fourier continuation method is used to accurately represent all fields and their spatial derivatives, allowing also for efficient solution of Poisson equations with different boundaries. A study of conducting flows at different Reynolds and Hartmann numbers, and with different boundary conditions, is presented to study convergence of the method and the accuracy of the solenoidal and boundary conditions.
117 - Zhicheng Hu , Zhenning Cai 2019
We introduce a numerical solver for the spatially inhomogeneous Boltzmann equation using the Burnett spectral method. The modelling and discretization of the collision operator are based on the previous work [Z. Cai, Y. Fan, and Y. Wang, Burnett spec tral method for the spatially homogeneous Boltzmann equation, arXiv:1810.07804], which is the hybridization of the BGK operator for higher moments and the quadratic collision operator for lower moments. To ensure the preservation of the equilibrium state, we introduce an additional term to the discrete collision operator, which equals zero when the number of degrees of freedom tends to infinity. Compared with the previous work [Z. Hu, Z. Cai, and Y. Wang,Numerical simulation of microflows using Hermite spectral methods, arXiv:1807.06236], the computational cost is reduced by one order. Numerical experiments such as shock structure calculation and Fourier flows are carried out to show the efficiency and accuracy of our numerical method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا